The Paracelsian Archeus was the presiding spirit in living creatures, and worked through special local ferments, by which the functions of the organs are controlled. Disease of any part represents a strike on the part of the local Archeus, who refuses to work. Though full of fanciful ideas, Van Helmont had the experimental spirit and was the first chemist to discover the diversity of gases. Like his teacher, he was in revolt against the faculty, and he has bitter things to say of physicians. He got into trouble with the Church about the magnetic cure of wounds, as no fewer than twenty-seven propositions incompatible with the Catholic faith were found in his pamphlet (Ferguson). The Philosophus per ignem, Toparcha in Merode, Royenborch, as he is styled in certain of his writings, is not an easy man to tackle. I show the t.i.tle-page of the "Ortus Medicinae," the collection of his works by his son. As with the pages of Paracelsus, there are many gems to be dug out. The counterblast against bleeding was a useful protest, and to deny in toto its utility in fever required courage--a quality never lacking in the Father of Modern Chemistry, as he has been called.
A man of a very different type, a learned academic, a professor of European renown, was Daniel Sennert of Wittenberg, the first to introduce the systematic teaching of chemistry into the curriculum, and who tried to harmonize the Galenists and Paracelsians. Franciscus Sylvius, a disciple of Van Helmont, established the first chemical laboratory in Europe at Leyden, and to him is due the introduction of modern clinical teaching. In 1664 he writes: "I have led my pupils by the hand to medical practice, using a method unknown at Leyden, or perhaps elsewhere, i.e., taking them daily to visit the sick at the public hospital. There I have put the symptoms of disease before their eyes; have let them hear the complaints of the patients, and have asked them their opinions as to the causes and rational treatment of each case, and the reasons for those opinions. Then I have given my own judgment on every point. Together with me they have seen the happy results of treatment when G.o.d has granted to our cares a restoration of health; or they have a.s.sisted in examining the body when the patient has paid the inevitable tribute to death."(39)
(39) Withington: Medical History from the Earliest Times, London, 1894, pp. 312-313.
Glauber, Willis, Mayow, Lemery, Agricola and Stahl led up to Robert Boyle, with whom modern chemistry may be said to begin. Even as late as 1716, Lady Mary Wortley Montagu in Vienna found that all had transferred their superst.i.tions from religion to chemistry; "scarcely a man of opulence or fashion that has not an alchemist in his service." To one scientific man of the period I must refer as the author of the first scientific book published in England. Dryden sings:
Gilbert shall live till load-stones cease to draw Or British fleets the boundless ocean awe.
And the verse is true, for by the publication in 1600 of the "De Magnete" the science of electricity was founded. William Gilbert was a fine type of the sixteenth-century physician, a Colchester man, educated at St. John's College, Cambridge. Silva.n.u.s Thompson says: "He is beyond question rightfully regarded as the Father of Electric Science. He founded the entire subject of Terrestrial Magnetism. He also made notable contributions to Astronomy, being the earliest English expounder of Copernicus. In an age given over to metaphysical obscurities and dogmatic sophistry, he cultivated the method of experiment and of reasoning from observation, with an insight and success which ent.i.tles him to be regarded as the father of the inductive method. That method, so often accredited to Bacon, Gilbert was practicing years before him."(40)
(40) Silva.n.u.s P. Thompson: Gilbert of Colchester, Father of Electrical Science, London, Chiswick Press, 1903, p. 3.
CHAPTER V -- THE RISE AND DEVELOPMENT OF MODERN MEDICINE
THE middle of the seventeenth century saw the profession thus far on its way--certain objective features of disease were known, the art of careful observation had been cultivated, many empirical remedies had been discovered, the coa.r.s.er structure of man's body had been well worked out, and a good beginning had been made in the knowledge of how the machinery worked--nothing more. What disease really was, where it was, how it was caused, had not even begun to be discussed intelligently.
An empirical discovery of the first importance marks the middle of the century. The story of cinchona is of special interest, as it was the first great specific in disease to be discovered. In 1638, the wife of the Viceroy of Peru, the Countess of Chinchon, lay sick of an intermittent fever in the Palace of Lima. A friend of her husband's, who had become acquainted with the virtues, in fever, of the bark of a certain tree, sent a parcel of it to the Viceroy, and the remedy administered by her physician, Don Juan del Vego, rapidly effected a cure. In 1640, the Countess returned to Spain, bringing with her a supply of quina bark, which thus became known in Europe as "the Countess's Powder" (pulvis Comitissae). A little later, her doctor followed, bringing additional quant.i.ties. Later in the century, the Jesuit Fathers sent parcels of the bark to Rome, whence it was distributed to the priests of the community and used for the cure of ague; hence the name of "Jesuits' bark." Its value was early recognized by Sydenham and by Locke. At first there was a great deal of opposition, and the Protestants did not like it because of its introduction by the Jesuits. The famous quack, Robert Talbor, sold the secret of preparing quinquina to Louis XIV in 1679 for two thousand louis d'or, a pension and a t.i.tle. That the profession was divided in opinion on the subject was probably due to sophistication, or to the importation of other and inert barks. It was well into the eighteenth century before its virtues were universally acknowledged. The tree itself was not described until 1738, and Linnaeus established the genus "Chinchona" in honor of the Countess.(1)
(1) Clements R. Markham: Peruvian Bark, John Murray, London, 1880; Memoir of the Lady Anna di Osoria, Countess of Chinchona and Vice-Queen of Peru, 1874.
A step in advance followed the objective study of the changes wrought in the body by disease. To a few of these the anatomists had already called attention. Vesalius, always keen in his description of aberrations from the normal, was one of the first to describe internal aneurysm. The truth is, even the best of men had little or no appreciation of the importance of the study of these changes. Sydenham scoffs at the value of post-mortems.
Again we have to go back to Italy for the beginning of these studies, this time to Florence, in the glorious days of Lorenzo the Magnificent.
The pioneer now is not a professor but a general pract.i.tioner, Antonio Benivieni, of whom we know very little save that he was a friend of Marsilio Ficino and of Angelo Poliziano, and that he practiced in Florence during the last third of the fifteenth century, dying in 1502.
Through a.s.sociations with the scholars of the day, he had become a student of Greek medicine and he was not only a shrewd and accurate observer of nature but a bold and successful pract.i.tioner. He had formed the good habit of making brief notes of his more important cases, and after his death these were found by his brother Jerome and published in 1507.(2) This book has a rare value as the record of the experience of an unusually intelligent pract.i.tioner of the period. There are in all 111 observations, most of them commendably brief. The only one of any length deals with the new "Morbus Gallicus," of which, in the short period between its appearance and Benivieni's death, he had seen enough to leave a very accurate description; and it is interesting to note that even in those early days mercury was employed for its cure. The surgical cases are of exceptional interest, and No. 38 refers to a case of angina for which he performed a successful operation. This is supposed to have been a tracheotomy, and if so, it is the first in the fourteen centuries that had elapsed since the days of Antyllus.(3) There are other important cases which show that he was a dexterous and fearless surgeon.
But the special interest of the work for us is that, for the first time in modern literature, we have reports of post-mortem examinations made specifically with a view to finding out the exact cause of death. Among the 111 cases, there are post-mortem records of cases of gallstones, abscess of the mesentery, thrombosis of the mesenteric veins, several cases of heart disease, senile gangrene and one of cor villosum. From no other book do we get so good an idea of a pract.i.tioner's experience at this period; the notes are plain and straightforward, and singularly free from all theoretical and therapeutic vagaries. He gives several remarkable instances of faith healing.
(2) De abditis nonnullis ac mirandis morborum et sanationum causis. 8th, Florence, Gandhi, 1507.
(3) Possibly it was only a case of angina Ludovici, or retro-pharyngeal abscess.
To know accurately the anatomical changes that take place in disease is of importance both for diagnosis and for treatment. The man who created the science, who taught us to think anatomically of disease, was Morgagni, whose "De sedibus et causis morborum per anatomen indagatis"(4) is one of the great books in our literature. During the seventeenth century, the practice of making post-mortem examinations had extended greatly, and in the "Sepulchretum anatomic.u.m" of Bonetus (1679), these scattered fragments are collected.(5) But the work of Morgagni is of a different type, for in it are the clinical and anatomical observations of an able physician during a long and active life. The work had an interesting origin. A young friend interested in science and in medicine was fond of discoursing with Morgagni about his preceptors, particularly Valsalva and Albertini, and sometimes the young man inquired about Morgagni's own observations and thoughts. Yielding to a strong wish, Morgagni consented to write his young friend familiar letters describing his experiences. I am sorry that Morgagni does not mention the name of the man to whom we are so much indebted, and who, he states, was so pleased with the letters that he continually solicited him to send more and more "till he drew me on so far as the seventieth; ... when I begged them of him in order to revise their contents; he did not return them, till he had made me solemnly promise, that I would not abridge any part thereof" (Preface).
(4) Venice, 1761.
(5) Boerhaave remarked that if a man wished to deserve or get a medical degree from ONE medical author let it be this. (James Atkinson: Medical Bibliography, 1834, 268.)
Born in 1682, Morgagni studied at Bologna under Valsalva and Albertini.
In 1711, he was elected professor of medicine at Padua. He published numerous anatomical observations and several smaller works of less importance. The great work which has made his name immortal in the profession, appeared in his eightieth year, and represents the acc.u.mulated experience of a long life. Though written in the form of letters, the work is arranged systematically and has an index of exceptional value. From no section does one get a better idea of the character and scope of the work than from that relating to the heart and arteries--affections of the pericardium, diseases of the valves, ulceration, rupture, dilation and hypertrophy and affections of the aorta are very fully described. The section on aneurysm of the aorta remains one of the best ever written. It is not the anatomical observations alone that make the work of unusual value, but the combination of clinical with anatomical records. What could be more correct than this account of angina pectoris--probably the first in the literature? "A lady forty-two years of age, who for a long time, had been a valetudinarian, and within the same period, on using pretty quick exercise of body, she was subject to attacks of violent anguish in the upper part of the chest on the left side, accompanied with a difficulty of breathing, and numbness of the left arm; but these paroxysms soon subsided when she ceased from exertion. In these circ.u.mstances, but with cheerfulness of mind, she undertook a journey from Venice, purposing to travel along the continent, when she was seized with a paroxysm, and died on the spot. I examined the body on the following day.... The aorta was considerably dilated at its curvature; and, in places, through its whole tract, the inner surface was unequal and ossified. These appearances were propagated into the arteria innominata. The aortic valves were indurated...." He remarks, "The delay of blood in the aorta, in the heart, in the pulmonary vessels, and in the vena cave, would occasion the symptoms of which the woman complained during life; namely, the violent uneasiness, the difficulty of breathing, and the numbness of the arm."(6)
(6) Cooke's Morgagni, Vol. 1, pp. 417-418. I cannot too warmly commend to young clinicians the reading of Morgagni. English editions are available--Alexander's three-volume translation of 1769 and Cooke's Abridgement (London, 1822), of which there was an American edition published in Boston in 1824.
Morgagni's life had as much influence as his work. In close correspondence with the leading men of the day, with the young and rising teachers and workers, his methods must have been a great inspiration; and he came just at the right time. The profession was literally ravaged by theories, schools and systems--iatromechanics, iatrochemistry, humoralism, the animism of Stahl, the vitalistic doctrines of Van Helmont and his followers--and into this metaphysical confusion Morgagni came like an old Greek with his clear observation, sensible thinking and ripe scholarship. Sprengel well remarks that "it is hard to say whether one should admire most his rare dexterity and quickness in dissection, his unimpeachable love of truth and justice in his estimation of the work of others, his extensive scholarship and rich cla.s.sical style or his downright common sense and manly speech."
Upon this solid foundation the morbid anatomy of modern clinical medicine was built. Many of Morgagni's contemporaries did not fully appreciate the change that was in progress, and the value of the new method of correlating the clinical symptoms and the morbid appearances.
After all, it was only the extension of the Hippocratic method of careful observation--the study of facts from which reasonable conclusions could be drawn. In every generation there had been men of this type--I dare say many more than we realize--men of the Benivieni character, thoroughly practical, clear-headed physicians. A model of this sort arose in England in the middle of the seventeenth century, Thomas Sydenham (1624-1689), who took men back to Hippocrates, just as Harvey had led them back to Galen. Sydenham broke with authority and went to nature. It is extraordinary how he could have been so emanc.i.p.ated from dogmas and theories of all sorts. He laid down the fundamental proposition, and acted upon it, that "all disease could be described as natural history." To do him justice we must remember, as Dr. John Brown says, "in the midst of what a ma.s.s of errors and prejudices, of theories actively mischievous, he was placed, at a time when the mania of hypothesis was at its height, and when the practical part of his art was overrun and stultified by vile and silly nostrums"
("Horae Subsecivae," Vol. I, 4th ed., Edinburgh, 1882, p. 40).
Listen to what he says upon the method of the study of medicine: "In writing therefore, such a natural history of diseases, every merely philosophical hypothesis should be set aside, and the manifest and natural phenomena, however minute, should be noted with the utmost exactness. The usefulness of this procedure cannot be easily overrated, as compared with the subtle inquiries and trifling notions of modern writers, for can there be a shorter, or indeed any other way of coming at the morbific causes, or discovering the curative indications than by a certain perception of the peculiar symptoms? By these steps and helps it was that the father of physic, the great Hippocrates, came to excel, his theory being no more than an exact description or view of nature. He found that nature alone often terminates diseases, and works a cure with a few simple medicines, and often enough with no medicines at all."
Towards the end of the century many great clinical teachers arose, of whom perhaps the most famous was Boerhaave, often spoken of as the Dutch Hippocrates, who inspired a group of distinguished students. I have already referred to the fact that Franciscus Sylvius at Leyden was the first among the moderns to organize systematic clinical teaching. Under Boerhaave, this was so developed that to this Dutch university students flocked from all parts of Europe. After teaching botany and chemistry, Boerhaave succeeded to the chair of physic in 1714. With an unusually wide general training, a profound knowledge of the chemistry of the day and an accurate acquaintance with all aspects of the history of the profession, he had a strongly objective att.i.tude of mind towards disease, following closely the methods of Hippocrates and Sydenham. He adopted no special system, but studied disease as one of the phenomena of nature. His clinical lectures, held bi-weekly, became exceedingly popular and were made attractive not less by the accuracy and care with which the cases were studied than by the freedom from fanciful doctrines and the frank honesty of the man. He was much greater than his published work would indicate, and, as is the case with many teachers of the first rank, his greatest contributions were his pupils. No other teacher of modern times has had such a following. Among his favorite pupils may be mentioned Haller, the physiologist, and van Swieten and de Haen, the founders of the Vienna school.
In Italy, too, there were men who caught the new spirit, and appreciated the value of combining morbid anatomy with clinical medicine. Lancisi, one of the early students of disease of the heart, left an excellent monograph on the subject, and was the first to call special attention to the a.s.sociation of syphilis with cardio-vascular disease. A younger contemporary of his at Rome, Baglivi, was unceasing in his call to the profession to return to Hippocratic methods, to stop reading philosophical theories and to give up what he calls the "fatal itch" to make systems.
The Leyden methods of instruction were carried far and wide throughout Europe; into Edinburgh by John Rutherford, who began to teach at the Royal Infirmary in 1747, and was followed by Whytt and by Cullen; into England by William Saunders of Guy's Hospital. Unfortunately the great majority of clinicians could not get away from the theoretical conceptions of disease, and Cullen's theory of spasm and atony exercised a profound influence on practice, particularly in this country, where it had the warm advocacy of Benjamin Rush. Even more widespread became the theories of a pupil of Cullen's, John Brown, who regarded excitability as the fundamental property of all living creatures: too much of this excitability produced what were known as sthenic maladies, too little, asthenic; on which principles practice was plain enough. Few systems of medicine have ever stirred such bitter controversy, particularly on the Continent, and in Charles Creighton's account of Brown(7) we read that as late as 1802 the University of Gottingen was so convulsed by controversies as to the merits of the Brunonian system that contending factions of students in enormous numbers, not unaided by the professors, met in combat in the streets on two consecutive days and had to be dispersed by a troop of Hanoverian horse.
(7) Dictionary of National Biography, London, 1886, VII, 14-17.
But the man who combined the qualities of Vesalius, Harvey and Morgagni in an extraordinary personality was John Hunter. He was, in the first place, a naturalist to whom pathological processes were only a small part of a stupendous whole, governed by law, which, however, could never be understood until the facts had been acc.u.mulated, tabulated and systematized. By his example, by his prodigious industry, and by his suggestive experiments he led men again into the old paths of Aristotle, Galen and Harvey. He made all thinking physicians naturalists, and he lent a dignity to the study of organic life, and re-established a close union between medicine and the natural sciences. Both in Britain and Greater Britain, he laid the foundation of the great collections and museums, particularly those connected with the medical schools. The Wistar-Horner and the Warren Museums in this country originated with men greatly influenced by Hunter. He was, moreover, the intellectual father of that interesting group of men on this side of the Atlantic who, while practising as physicians, devoted much time and labor to the study of natural history; such men as Benjamin Smith Barton, David Hossack, Jacob Bigelow, Richard Harlan, John D. G.o.dman, Samuel George Morton, John Collins Warren, Samuel L. Mitchill and J. Ailken Meigs. He gave an immense impetus in Great Britain to the study of morbid anatomy, and his nephew, Matthew Baillie, published the first important book on the subject in the English language.
Before the eighteenth century closed practical medicine had made great advance. Smallpox, though not one of the great scourges like plague or cholera, was a prevalent and much dreaded disease, and in civilized countries few reached adult life without an attack. Edward Jenner, a pract.i.tioner in Gloucestershire, and the pupil to whom John Hunter gave the famous advice: "Don't think, try!" had noticed that milkmaids who had been infected with cowpox from the udder of the cow were insusceptible to smallpox. I show you here the hand of Sarah Nelmes with cowpox, 1796. A vague notion had prevailed among the dairies from time immemorial that this disease was a preventive of the smallpox. Jenner put the matter to the test of experiment. Let me quote here his own words: "The first experiment was made upon a lad of the name of Phipps, in whose arm a little vaccine virus was inserted, taken from the hand of a young woman who had been accidentally infected by a cow.
Notwithstanding the resemblance which the pustule, thus excited on the boy's arm, bore to variolous inoculation, yet as the indisposition attending it was barely perceptible, I could scarcely persuade myself the patient was secure from the Small Pox. However, on his being inoculated some months afterwards, it proved that he was secure."(8) The results of his experiments were published in a famous small quarto volume in 1798.(*) From this date, smallpox has been under control.
Thanks to Jenner, not a single person in this audience is pockmarked!
A hundred and twenty-five years ago, the faces of more than half of you would have been scarred. We now know the principle upon which protection is secured: an active acquired immunity follows upon an attack of a disease of a similar nature. Smallpox and cowpox are closely allied and the substances formed in the blood by the one are resistant to the virus of the other. I do not see how any reasonable person can oppose vaccination or decry its benefits. I show you the mortality figures(9) of the Prussian Army and of the German Empire. A comparison with the statistics of the armies of other European countries in which revaccination is not so thoroughly carried out is most convincing of its efficacy.
(8) Edward Jenner: The Origin of the Vaccine Inoculation, London, 1801.
(*) Reprinted by Camac: Epoch-making Contributions to Medicine, etc., 1909.--Ed.
(9) Jockmann: Pocken und Vaccinationlehre, 1913.
The early years of the century saw the rise of modern clinical medicine in Paris. In the art of observation men had come to a standstill.
I doubt very much whether Corvisart in 1800 was any more skilful in recognizing a case of pneumonia than was Aretaeus in the second century A. D. But disease had come to be more systematically studied; special clinics were organized, and teaching became much more thorough. Anyone who wishes to have a picture of the medical schools in Europe in the first few years of the century, should read the account of the travels of Joseph Frank of Vienna.(10) The description of Corvisart is of a pioneer in clinical teaching whose method remains in vogue today in France--the ward visit, followed by a systematic lecture in the amphitheatre. There were still lectures on Hippocrates three times a week, and bleeding was the princ.i.p.al plan of treatment: one morning Frank saw thirty patients, out of one hundred and twelve, bled!
Corvisart was the strong clinician of his generation, and his accurate studies on the heart were among the first that had concentrated attention upon a special organ. To him, too, is due the reintroduction of the art of percussion in internal disease discovered by Auenbrugger in 1761.
(10) Joseph Frank: Reise nach Paris (etc.), Wien, 1804-05.
The man who gave the greatest impetus to the study of scientific medicine at this time was Bichat, who pointed out that the pathological changes in disease were not so much in organs as in tissues. His studies laid the foundation of modern histology. He separated the chief const.i.tuent elements of the body into various tissues possessing definite physical and vital qualities. "Sensibility and contractability are the fundamental qualities of living matter and of the life of our tissues. Thus Bichat subst.i.tuted for vital forces 'vital properties,'
that is to say, a series of vital forces inherent in the different tissues."(11) His "Anatomic Generale," published in 1802, gave an extraordinary stimulus to the study of the finer processes of disease, and his famous "Recherches sur la Vie et sur la Mort" (1800) dealt a death-blow to old iatromechanical and iatrochemical views. His celebrated definition may be quoted: "La vie est l'ensemble des proprietes vitales qui resistent aux proprietes physiques, ou bien la vie est l'ensemble des fonctions qui resistent a la mort." (Life is the sum of the vital properties that withstand the physical properties, or, life is the sum of the functions that withstand death.) Bichat is another pathetic figure in medical history. His meteoric career ended in his thirty-first year: he died a victim of a post-mortem wound infection. At his death, Corvisart wrote Napoleon: "Bichat has just died at the age of thirty. That battlefield on which he fell is one which demands courage and claims many victims. He has advanced the science of medicine. No one at his age has done so much so well."
(11) E. Boinet: Les doctrines medicules, leur evolution, Paris, 1907, pp. 85-86.
It was a pupil of Corvisart, Rene Theophile Laennec, who laid the foundation of modern clinical medicine. The story of his life is well known. A Breton by birth, he had a hard, up-hill struggle as a young man--a struggle of which we have only recently been made aware by the publication of a charming book by Professor Rouxeau of Nantes--"Laennec avant 1806." Influenced by Corvisart, he began to combine the accurate study of cases in the wards with anatomical investigations in the dead-house. Before Laennec, the examination of a patient had been largely by sense of sight, supplemented by that of touch, as in estimating the degree of fever, or the character of the pulse.
Auenbrugger's "Inventum novum" of percussion, recognized by Corvisart, extended the field; but the discovery of auscultation by Laennec, and the publication of his work--"De l'Auscultation Mediate," 1819,--marked an era in the study of medicine. The clinical recognition of individual diseases had made really very little progress; with the stethoscope begins the day of physical diagnosis. The clinical pathology of the heart, lungs and abdomen was revolutionized. Laennec's book is in the category of the eight or ten greatest contributions to the science of medicine.(*) His description of tuberculosis is perhaps the most masterly chapter in clinical medicine. This revolution was effected by a simple extension of the Hippocratic method from the bed to the dead-house, and by correlating the signs and symptoms of a disease with its anatomical appearances.
(*) John Forbes's translation of Auenbrugger and part of his translation of Lacnnec are reprinted in Camac's Epoch-making Contributions, etc., 1909.--Ed.
The pupils and successors of Corvisart--Bayle, Andral, Bouillaud, Chomel, Piorry, Bretonneau, Rayer, Cruveilhier and Trousseau--brought a new spirit into the profession. Everywhere the investigation of disease by clinical-pathological methods widened enormously the diagnostic powers of the physician. By this method Richard Bright, in 1836, opened a new chapter on the relation of disease of the kidney to dropsy, and to alb.u.minous urine. It had already been shown by Blackwell and by Wells, the celebrated Charleston (S.C.) physician, in 1811, that the urine contained alb.u.min in many cases of dropsy, but it was not until Bright began a careful investigation of the bodies of patients who had presented these symptoms, that he discovered the a.s.sociation of various forms of disease of the kidney with anasarca and alb.u.minous urine. In no direction was the harvest of this combined study more abundant than in the complicated and confused subject of fever. The work of Louis and of his pupils, W.W. Gerhard and others, revealed the distinction between typhus and typhoid fever, and so cleared up one of the most obscure problems in pathology. By Morgagni's method of "anatomical thinking,"
Skoda in Vienna, Schonlein in Berlin, Graves and Stokes in Dublin, Marshall Hall, C. J. B. Williams and many others introduced the new and exact methods of the French and created a new clinical medicine. A very strong impetus was given by the researches of Virchow on cellular pathology, which removed the seats of disease from the tissues, as taught by Bichat, to the individual elements, the cells. The introduction of the use of the microscope in clinical work widened greatly our powers of diagnosis, and we obtained thereby a very much clearer conception of the actual processes of disease. In another way, too, medicine was greatly helped by the rise of experimental pathology, which had been introduced by John Hunter, was carried along by Magendie and others, and reached its culmination in the epoch-making researches of Claude Bernard. Not only were valuable studies made on the action of drugs, but also our knowledge of cardiac pathology was revolutionized by the work of Traube, Cohnheim and others. In no direction did the experimental method effect such a revolution as in our knowledge of the functions of the brain. Clinical neurology, which had received a great impetus by the studies of Todd, Romberg, Lockhart Clarke, d.u.c.h.enne and Weir Mitch.e.l.l, was completely revolutionized by the experimental work of Hitzig, Fritsch and Ferrier on the localization of functions in the brain. Under Charcot, the school of French neurologists gave great accuracy to the diagnosis of obscure affections of the brain and spinal cord, and the combined results of the new anatomical, physiological and experimental work have rendered clear and definite what was formerly the most obscure and complicated section of internal medicine. The end of the fifth decade of the century is marked by a discovery of supreme importance. Humphry Davy had noted the effects of nitrous oxide. The exhilarating influence of sulphuric ether had been casually studied, and Long of Georgia had made patients inhale the vapor until anaesthetic and had performed operations upon them when in this state; but it was not until October 16, 1846, in the Ma.s.sachusetts General Hospital, that Morton, in a public operating room, rendered a patient insensible with ether and demonstrated the utility of surgical anaesthesia. The rival claims of priority no longer interest us, but the occasion is one of the most memorable in the history of the race. It is well that our colleagues celebrate Ether Day in Boston--no more precious boon has ever been granted to suffering humanity.(*)
(*) Cf. Osler: Proc. Roy. Soc. Med., XI, Sect. Hist. Med., pp.
65-69, 1918, or, Annals Med. Hist., N.Y., I, 329-332. Cf. also Morton's publications reprinted in Camac's book cited above.--Ed.
In 1857, a young man, Louis Pasteur, sent to the Lille Scientific Society a paper on "Lactic Acid Fermentation" and in December of the same year presented to the Academy of Sciences in Paris a paper on "Alcoholic Fermentation" in which he concluded that "the deduplication of sugar into alcohol and carbonic acid is correlative to a phenomenon of life." A new era in medicine dates from those two publications. The story of Pasteur's life should be read by every student.(*) It is one of the glories of human literature, and, as a record of achievement and of n.o.bility of character, is almost without an equal.