Sulfa Drugs
The very first antibiotic was called Sulfanilamide, a member of a family of drugs called sulfa drugs. You may have seen it in a World War II movie, where a medic sprinkles a white powder over a wound. The ability of sulfa drugs to stop infections and allow people to heal was miraculous for its time. It was discovered by accident, when people found that a red fabric dye stopped infections. This took a while to figure out, because the dye itself didn't stop disease in the lab, but rather broke down in the body to make the antibiotic.
Sulfanilamide is fairly toxic, and there is not a lot of difference between a dose that has little effect and one that makes a person sick. It's not an ideal drug, but still one which in many ways deserves the term "miraculous."
Once scientists figured out what the drug was, and how to produce it, they tried a variety of chemical variations to see what might work better or be less toxic. They found a couple of dozen varieties, with differing ability to stop different diseases with more or less toxic effects.
Today, sulfanilamide is not used anymore as a medicine, but it is often made as an exercise in soph.o.m.ore organic chemistry lab. It is the easiest antibiotic to synthesize. Sulfa drugs are less effective than penicillin and other drugs commonly used today. That's because they do not actually kill bacteria, but rather stop them from growing, requiring the immune system to do the killing. They are also limited in what they work against: they have no affect on typhus, syphilis, or smallpox, and only some effect on plague. But they are fairly effective on wounds and skin infections.
Chloramphenicol
Chloramphenicol was originally grown from microorganisms, as were penicillin, tetracycline, streptomycin, and the other half dozen or so antibiotics available in the 1940s and 1950s. Once the structure of the drug was determined, a method of making it from chemicals proved cheaper than growing it. This gave it a large compet.i.tive edge over the others in terms of price. In the context of the 1632 series and the resources available to the characters, it is the only powerful antibiotic that can be synthesized. Its chemical formula is even listed in Encyclopedia Britannica, as well as the Physician's Desk Reference, or PDR.
In some ways chloramphenicol is ideal, in that it can treat a wide variety of infections. Unfortunately, it has a couple of disadvantages as well, which is why most people today have never heard of it:
First, it is often not properly processed by newborns, leading to something called "Gray Baby Syndrome." Fortunately, this syndrome usually reverses itself when the newborn is taken off the drug. But, obviously, it limits chloramphenicol's effectiveness for very young children.
Secondly, and more d.a.m.ning, is the fact that in about 1 in 25,000 people, it causes aplastic anemia. This is a disorder in which some blood cells are no longer produced, resulting, about two weeks later, in the patient suffering a very unpleasant death.
As doc.u.mented in the book Adverse Reactions, this was allegedly discovered shortly after its introduction, and yet the manufacturer, Parke-Davis, continued an aggressive marketing campaign. It was over a decade before Congressional committee hearings and lawsuits revealed the very real dangers to the public and stopped the deaths of many patients. Because of the danger, chloramphenicol is no longer used today in the United States or other wealthy industrialized nations. But it is still a drug of choice in Africa, where its cost effectiveness overrides the occasional fatal side effects.
In the context of the 1632 series, however, chloramphenicol is an ideal drug. The drug can effectively treat typhus and syphilis, which sulfa drugs cannot. It is far more effective at treating plague and most other bacterial infections than sulfa drugs. And when the death rate from the drug-1 in 25,000, or .004%-is compared to a 33% fatality rate for typhus, and a higher one for plague and syphilis, it is easy to see the advantages. If someone has one of these diseases, chloramphenicol is the only treatment available, and is arguably the most valuable man-made product in the 1632 context. Obviously-as was already touched on in the novel 1633-there will be many issues needing to be dealt with regarding fairness and the cost of the drug. But that's true of the availability of up-time medicine in general.
While it will not be easy to produce chloramphenicol with the resources at hand, it can be done-with a lot of Grantville's money and skilled people. Early production would probably be limited to bucket quant.i.ties, however, enough to treat perhaps a hundred people per month. Only with the advent of stainless steel and chemical plants will production on a larger scale become likely. And for some time, the people capable of manufacturing the drug will be limited to a small number of the up-timers with a pharmaceutical or chemical background.
Conclusion
I'm afraid there isn't an easy answer to the development of penicillin or other grown antibiotics. It will take time, effort, expense, and some risk. Ultimately, in a decade or so, the characters in the 1632 series will succeed. In the interim, chloramphenicol and sulfa drugs will have to fill the void, and save as many lives as possible.
Chemical Engineering in 1632: It's not just a job, it's an adventure.
My thanks go to Rick Boatright, Drew Clark, Laura Runkle, and other members of the 1632 chem group for their contributions to this article, as well as to my wife, Marla, for editing it.
HORSE POWER.
by
Karen Bergstralh
The people of Grantville have been plunged into a world where horsepower literally means horse power.
In the 17th century muscle, water, and air provided power. Water wheels provide power for mills but their use is limited by location. Water is also subject to seasonal variations. Air-driven power always comes to mind with the Dutch windmills; but, again, air-powered windmills are limited by location and subject to variations. The ability of boats to move down rivers with the currents and back upstream with wind power again depends upon variations in the water and wind.
For dependable and portable power, that leaves muscles. The muscles involved might be human, canine, bovine, or equine. Horses, mules, and oxen provided the heavy muscle power.
The major categories that horses are used for are:
Draft-pull carts, wagons, plows, harrows, ca.n.a.l barges, and such;
Transportation-riding;
War-cavalry, officers' mounts, pulling artillery;
Power-hitched to sweeps to provide rotary power for machinery;
Food-do I have to explain this one?
Each category has different physical and mental requirements. A horse that is well suited to be a cavalry mount would not be suited to pull a wagon or plow. Each job requires a different combination of body type and personality. Also, each of these broad categories can be broken down into more specific uses, all with their own body type requirements. Within each category there will be a wide range of horses from the few, very good, very expensive, to the many solid, medium priced, to the poor quality, very cheap.
Draft horses may be light, medium, or heavy. Light draft would be pulling two wheeled carts to haul produce or people from the farm or around the city. Small placid horses and ponies are suited to these jobs. A new wrinkle, starting in the 16th century and continuing in our timeline (OTL) until well into the 20th, is the development of fancy carriage horses. These fancy carriage horses fall between the light and medium draft categories. Medium draft horses would be used in teams of two to eight to pull plows, harrows, and wagons on the farms. Heavy draft horses, also used in teams, are needed to pull the mechanized farm equipment Grantville will be building.
Light and medium draft horses abound; heavy draft horses do not. A major change, one that is just starting in the 17th century, is the development of the heavy draft horse. As road systems get better between towns the larger draft breeds also begin to show up. They are the heavy trucks of the day. Oxen are still the animals of choice for plowing because the plows are so big, heavy, and awkward and horses are expensive. Slowly, in OTL, several heavy horse breeds developed and others were remodeled from medium to heavy draft. The early introduction of mechanized farm equipment will speed the demand for these heavy horses and in this area, the Grantviller with the Belgians may have something to offer his down-time farmer friends.
Horses used for transportation can be generally a.s.signed to two categories-speed and comfort. The speedsters are bred for just that. They are used to speed mail and messages and for the man in a hurry. The comfort horses are the amblers. Another major change that occurs in OTL is the almost complete disappearance of amblers or gaited horses from Europe. The ambler has a soft, easy to ride gait much appreciated by those who ride long distances. Modern examples of amblers would be such as the Peruvian Paso, Paso Fino, Icelandic, and Missouri Foxtrotters. The ambling gait is a natural gait and is known today by a number of names such as singlefoot, shuffle, amble, Paso Llano, Paso Fino, or Tolt.
Warhorses also come in several types. There is the heavy cavalry horse, the light cavalry horse, the officer's horse, and the artillery horse. Again, those horses best suited to each category differ in body type and personality. All warhorses, regardless of use, must be able to learn to tolerate the battlefield or they have a very short career.
The medieval knight's destrier or Great Horse has disappeared from the battlefield along with the full suits of armor, victims of changes in warfare. The destrier type still hangs on, but is now seen mostly in the grand equestrian schools such as the Spanish Riding School. Some officers, to prove they are true Gentlemen, will use the 17th century version of the destrier as their mount. The various movements, such as the Airs Above the Ground, once used in battle, now are reduced to Equestrian exercises.
The heavy cavalry horse is a st.u.r.dy animal, similar to today's Irish Draft horse. This troop horse can carry the heavier armored soldier in grand charges against the enemy line invoking terror in those facing his charge. This is the horse of close order formations and close quarter engagements. He has to be strong enough to cart his soldier to and from battle as well.
The light cavalry horse is more of a speedster; his soldier has less armor, and the tactics used more hit and run or pursuit of broken (routed) troops. In Poland, they have been breeding Arabians since the 12th century and intermixing them with native light horses to produce the ideal light cavalry horse. All across Europe horse breeders are mixing various types in efforts to attain these ideal cavalry horses. In OTL, one result of this will be the English Thoroughbred.
Artillery horses are somewhere between the heavy cavalry and medium draft horses, or will be with Grantville's improvements to the Swedish artillery. Artillery in the 17th century was heavy and it moved slowly. Oxen were preferred for artillery draft animals. This will change and a medium sized, strong, and quick artillery horse will be in demand.
All types of horses can provide power and food and often the sweeps were the last stop before the larder for aged and broken-down horses.
Grantville's impact on the horse population will come mainly in the demand for new types of horses. In leapfrogging three hundred years of gradual improvements to farm machinery they will quickly create demand for the heavy draft horses.
Changing horse types takes time. Basically, gestation in horses takes eleven months. The foal is dependent on its dam for roughly six to seven months. At two years the horse may be developed enough to start training but two is when they lose their baby teeth. A sore mouth is not a good place for a bit. By the time they are four the growth plates in the knees are mature and the legs can withstand heavy work. Some breeds are not considered fully mature until six or even later. Starting a horse working too early can lead to physical problems. Training can add anywhere from six weeks to six or more years, depending on what the horse is being trained for. Adding it up, from breeding to useful animal is five years at a minimum (for those needing only the most basic training) to ten years or more for the highly trained.
One example of new horse types being developed is the Oldenburg. Bred in Lower Saxony, near the city of Oldenburg, they were based on the Friesians with a mix of Spanish, Neapolitan, and Barb blood. Early on they were known for consistency of type (conformation) and for being powerful animals with a kind character and a willingness to work under saddle, pulling a carriage, or in the fields. The Oldenburgs were started as a breed by Graf Johann XVI von Oldenburg (1573-1603) who set up breeding farms to produce warhorses. His son, Count Anton Gunther von Oldenburg (1603-1667), also a renowned horseman, continued to breed these animals for riding and carriage pulling, warhorses being no longer at a premium.
Of the medium sized draft breeds existing in the 17th century, one is the Percheron. They developed in the province of Le Perche in France. This breed's history is not well doc.u.mented. What is known is that the breed began as a warhorse. Their size, 15 to 16 hands high, is doc.u.mented from the 1600s although at that time they were still mixed use-riding and carriage-animals. While substantial, they were not as heavy as today. As with all European warhorses, they probably have some Spanish and possibly some Arabian blood. In the 17th century the breed began to be used as a carriage horse. Once relegated to draft roles, the breed changed conformation and size to suit its new role.
Breeds and Types