Fragments of science - Part 36
Library

Part 36

That study, moreover, has other merits and recommendations. It is, as I have said, organised and systematised by long-continued use. It is an instrument wielded by some of our best intellects in the education of youth; and it can point to results in the achievements of our foremost men. What, then, has science to offer which is in the least degree likely to compete with such a system? I cannot better reply than by recurring to the grand old story from which I have already quoted. Speaking of the world and all that therein is, of the sky and the stars around it, the ancient writer says, 'And G.o.d saw all that he had made, and behold it was very good.' It is the body of things thus described which science offers to the study of man. There is a very renowned argument much prized and much quoted by theologians, in which the universe is compared to a watch. Let us deal practically with this comparison. Supposing a watchmaker, having completed his instrument, to be so satisfied with his work as to call it very good, what would you understand him to mean? You would not suppose that he referred to the dial-plate in front and the chasing of the case behind, so much as to the wheels and pinions, the springs and jewelled pivots of the works within--to those qualities and powers, in short, which enable the watch to perform its work as a keeper of time. With regard to the knowledge of such a watch he would be a mere ignoramus who would content himself with outward inspection. I do not wish to say one severe word here to-day, but I fear that many of those who are very loud in their praise of the works of the Lord know them only in this outside and superficial way. It is the inner works of the universe which science reverently uncovers; it is the study of these that she recommends as a discipline worthy of all acceptation.

The ultimate problem of physics is to reduce matter by a.n.a.lysis to its lowest condition of divisibility, and force to its simplest manifestations, and then by synthesis to construct from these elements the world as it stands. We are still a long way from the final solution of this problem; and when the solution comes, it will be more one of spiritual insight than of actual observation. But though we are still a long way from this complete intellectual mastery of nature, we have conquered vast regions of it, have learned their polities and the play of their powers. We live upon a ball of 8,000 miles in diameter, swathed by an atmosphere of unknown height. This ball has been molten by heat, chilled to a solid, and sculptured by water. It is made up of substances possessing distinctive properties and modes of action, which offer problems to the intellect, some profitable to the child, others taxing the highest powers of the philosopher. Our native sphere turns on its axis, and revolves in s.p.a.ce. It is one of a band which all do the same. It is illuminated by a sun which, though nearly a hundred millions of miles distant, can be brought virtually into our closets and there subjected to examination. It has its winds and clouds, its rain and frost, its light, heat, sound, electricity, and magnetism. And it has its vast kingdoms of animals and vegetables. To a most amazing extent the human mind has conquered these things, and revealed the logic which runs through them. Were they facts only, without logical relationship, science might, as a means of discipline, suffer in comparison with language. But the whole body of phenomena is instinct with law; the facts are hung on principles, and the value of physical science as a means of discipline consists in the motion of the intellect, both inductively and deductively, along the lines of law marked out by phenomena. As regards the discipline to which I have already referred as derivable from the study of languages,--that, and more, is involved in the study of physical science. Indeed, I believe it would be possible so to limit and arrange the study of a portion of physics as to render the mental exercise involved in it almost qualitatively the same as that involved in the unravelling of a language.

I have thus far confined myself to the purely intellectual side of this question. But man is not all intellect. If he were so, science would, I believe, be his proper nutriment. But he feels as well as thinks; he is receptive of the sublime and beautiful as well as of the true. Indeed, I believe that even the intellectual action of a complete man is, consciously or unconsciously, sustained by an undercurrent of the emotions. It is vain to attempt to separate the moral and emotional from the intellectual. Let a man but observe himself, and he will, if I mistake not, find that in nine cases out of ten, the emotions const.i.tute the motive force which pushes his intellect into action. The reading of the works of two men, neither of them imbued with the spirit of modern science--neither of them, indeed, friendly to that spirit--has placed me here to-day. These men are the English Carlyle and the American Emerson. I must ever gratefully remember that through three long cold German winters Carlyle placed me in my tub, even when ice was on its surface, at five o'clock every morning--not slavishly, but cheerfully, meeting each day's studies with a resolute will, determined whether victor or vanquished not to shrink from difficulty. I never should have gone through a.n.a.lytical Geometry and the Calculus had it not been for those men. I never should have become a physical investigator, and hence without them I should not have been here to-day. They told me what I ought to do in a way that caused me to do it, and all my consequent intellectual action is to be traced to this purely moral source. To Carlyle and Emerson I ought to add Fichte, the greatest representative of pure idealism. These three unscientific men made me a practical scientific worker. They called out 'Act!' I hearkened to the summons, taking the liberty, however, of determining for myself the direction which effort was to take.

And I may now cry 'Act!' but the potency of action must be yours. I may pull the trigger, but if the gun be not charged there is no result. We are creators in the intellectual world as little as in the physical. We may remove obstacles, and render latent capacities active, but we cannot suddenly change the nature of man. The 'new birth' itself implies the pre-existence of a character which requires not to be created but brought forth. You cannot by any amount of missionary labour suddenly transform the savage into the civilised Christian. The improvement of man is _secular_--not the work of an hour or of a day. But though indubitably bound by our organisations, no man knows what the potentialities of any human mind may be, requiring only release to be brought into action. There are in the mineral world certain crystals--certain forms, for instance, of fluor-spar, which have lain darkly in the earth for ages, but which nevertheless have a potency of light locked up within them. In their case the potential has never become actual--the light is in fact held back by a molecular detent. When these crystals are warmed, the detent is lifted, and an outflow of light immediately begins. I know not how many of you may be in the condition of this fluor-spar. For aught I know, every one of you may be in this condition, requiring but the proper agent to be applied--the proper word to be spoken--to remove a detent, and to render you conscious of light and warmth within yourselves and sources of both to others.

The circle of human nature, then, is not complete without the arc of the emotions. The lilies of the field have a value for us beyond their botanical ones--a certain lightening of the heart accompanies the declaration that 'Solomon in all his glory was not arrayed like one of these.' The sound of the village bell has a value beyond its acoustical one. The setting sun has a value beyond its optical one.

The starry heavens, as you know, had for Immanuel Kant a value beyond their astronomical one. I think it very desirable to keep this horizon of the emotions open, and not to permit either priest or philosopher to draw down his shutters between you and it. Here the dead languages, which are sure to be beaten by science in the purely intellectual fight, have an irresistible claim. They supplement the work of science by exalting and refining the aesthetic faculty, and must on this account be cherished by all who desire to see human culture complete. There must be a reason for the fascination which these languages have so long exercised upon powerful and elevated minds--a fascination which will probably continue for men of Greek and Roman mould to the end of time.

In connection with this question one very obvious danger besets many of the more earnest spirits of our day--the danger of _haste_ in endeavouring to give the feelings repose. We are distracted by systems of theology and philosophy which were taught to us when young, and which now excite in us a hunger and a thirst for knowledge not proved to be attainable. There are periods when the judgment ought to remain in suspense, the data on which a decision might be based being absent. This discipline of suspending the judgment is a common one in science, but not so common as it ought to be elsewhere. I walked down Regent Street some time ago with a man of great gifts and acquirements, discussing with him various theological questions. I could not accept his views of the origin and destiny of the universe, nor was I prepared to enunciate any definite views of my own. He turned to me at length and said, 'You surely must have a theory of the universe.' That I should in one way or another have solved this mystery of mysteries seemed, to my friend a matter of course. 'I have not even a theory of magnetism' was my reply. We ought to learn to wait. We ought a.s.suredly to pause before closing with the advances of those expounders of the ways of G.o.d to men, who offer us intellectual peace at the modest cost of intellectual life.

The teachers of the world ought to be its best men, and for the present at all events such men must learn self-trust. By the fullness and freshness of their own Jives and utterances they must awaken life in others. The hopes and terrors which influenced our fathers are pa.s.sing away, and our trust henceforth must rest on the innate strength of man's moral nature. And here, I think, the poet will have a great part to play in the future culture of the world. To him, when he rightly understands his mission, and does not flinch from the tonic discipline which it a.s.suredly demands, we have a right to look for that heightening and brightening of life which so many of us need. To him it is given for a long time to come to fill those sh.o.r.es which the recession of the theologic tide has left exposed. Void of offence to science, he may freely deal with conceptions which science shuns, and become the ill.u.s.trator and interpreter of that Power which as

'Jehovah, Jove, or Lord,'

has. .h.i.therto filled and strengthened the human heart.

Let me utter one practical word in conclusion--take care of your health. There have been men who by wise attention to this point might have risen to any eminence--might have made great discoveries, written great poems, commanded armies, or ruled states, but who by unwise neglect of this point have come to nothing. Imagine Hercules as oarsman in a rotten boat; what can he do there but by the very force of his stroke expedite the ruin of his craft? Take care then of the timbers of your boat, and avoid all practices likely to introduce either wet or dry rot amongst them. And this is not to be accomplished by desultory or intermittent efforts of the will, but by the formation of _habits_. The will no doubt has sometimes to put forth its strength in order to crush the special temptation. But the formation of right habits is essential to your permanent security.

They diminish your chance of falling when a.s.sailed, and they augment your chance of recovery when overthrown.

If thou would'st know the mystic song Chaunted when the sphere was young, Aloft, abroad, the paean swells, O wise man, hear'st thou half it tells?

To the open ear it sings The early genesis of things; Of tendency through endless ages Of star-dust and star-pilgrimages, Of rounded worlds, of s.p.a.ce and time, Of the old floods' subsiding slime, Of chemic matter, force and form, Of poles and powers, cold, wet, and warm.

The rushing metamorphosis Dissolving all that fixture is, Melts things that be to things that seem, And solid nature to a dream.'

EMERSON.

Was waer' ein Gott der nur von aussen stiesse, Im Kreis das All am Finger laufen liesse Ihm ziemt's, die Welt im Innern zu bewegen, Natur in Sich, Sich in Natur zu hegen.'

GOETHE.

VIII. SCIENTIFIC USE OF THE IMAGINATION.

[Footnote: Discourse delivered before the British a.s.sociation at Liverpool, September 16, 1870.]

'Lastly, physical investigation, more than anything besides, helps to teach us the actual value and right use of the Imagination--of that wondrous faculty, which, left to ramble uncontrolled, leads us astray into a wilderness of perplexities and errors, a land of mists and shadows; but which, properly controlled by experience and reflection, becomes the n.o.blest attribute of man; the source of poetic genius, the instrument of discovery in Science, without the aid of which Newton would never have invented fluxions, nor Davy have decomposed the earths and alkalies, nor would Columbus have found another Continent.'--Address to the Royal Society by its President Sir Benjamin Brodie, November 30, 1859.

I carried with me to the Alps this year the burden of this evening's work. Save from memory I had no direct aid upon the mountains; but to spur up the emotions, on which so much depends, as well as to nourish indirectly the intellect and will, I took with me four works, comprising two volumes of poetry, Goethe's 'Farbenlehre,' and the work on 'Logic' recently published by Mr. Alexander Bain. In Goethe, so n.o.ble otherwise, I chiefly noticed the self-inflicted hurts of genius, as it broke itself in vain against the philosophy of Newton. Mr. Bain I found, for the most part, learned and practical, shining generally with a dry light, but exhibiting at times a flush of emotional strength, which proved that even logicians share the common fire of humanity. He interested me most when he became the mirror of my own condition. Neither intellectually nor socially is it good for man to be alone, and the sorrows of thought are more patiently borne when we find that they have been experienced by another. From certain pa.s.sages in his book I could infer that Mr. Bain was no stranger to such sorrows. Speaking for example of the ebb of intellectual force, which we all from time to time experience, Mr. Bain says: 'The uncertainty where to look for the next opening of discovery brings the pain of conflict and the debility of indecision.' These words have in them the true ring of personal experience. The action of the investigator is periodic. He grapples with a subject of enquiry, wrestles with it, and exhausts, it may be, both himself and it for the time being. He breathes a s.p.a.ce, and then renews the struggle in another field. Now this period of halting between two investigations is not always one of pure repose. It is often a period of doubt and discomfort--of gloom and ennui. 'The uncertainty where to look for the next opening of discovery brings the pain of conflict and the debility of indecision.' It was under such conditions that I had to equip myself for the hour and the ordeal that are now come.

The disciplines of common life are, in great part, exercises in the relations of s.p.a.ce, or in the mental grouping of bodies in s.p.a.ce; and, by such exercises, the public mind is, to some extent, prepared for the reception of physical conceptions. a.s.suming this preparation on your part, the wish gradually grew within me to trace, and to enable you to trace, some of the more occult features and operations of Light and Colour. I wished, if possible, to take you beyond the boundary of mere observation, into a region where things are intellectually discerned, and to show you there the hidden mechanism of optical action.

But how are those hidden things to be revealed? Philosophers may be right in affirming that we cannot transcend experience: we can, at all events, carry it a long way from its origin. We can magnify, diminish, qualify, and combine experiences, so as to render them fit for purposes entirely new. In explaining sensible phenomena, we habitually form mental images of the ultra-sensible. There are Tories even in science who regard Imagination as a faculty to be feared and avoided rather than employed. They have observed its action in weak vessels, and are unduly impressed by its disasters. But they might with equal justice point to exploded boilers as an argument against the use of steam. With accurate experiment and observation to work upon, Imagination becomes the architect of physical theory. Newton's pa.s.sage from a falling apple to a falling moon was an act of the prepared imagination, without which the 'laws of Kepler' could never have been traced to their foundations. Out of the facts of chemistry the constructive imagination of Dalton formed the atomic theory. Davy was richly endowed with the imaginative faculty, while with Faraday its exercise was incessant, preceding, accompanying and guiding all his experiments. His strength and fertility as a discoverer is to be referred in great part to the stimulus of his imagination. Scientific men fight shy of the word because of its ultra-scientific connotations; but the fact is that without the exercise of this power, our knowledge of nature would be a mere tabulation of co-existences and sequences. We should still believe in the succession of day and night, of summer and winter; but the conception of Force would vanish from our universe; causal relations would disappear, and with them that science which is now binding the parts of nature to an organic whole.

I should like to ill.u.s.trate by a few simple instances the use that scientific men have already made of this power of imagination, and to indicate afterwards some of the further uses that they are likely to make of it. Let us begin with the rudimentary experiences. Observe the falling of heavy rain-drops into a tranquil pond. Each drop as it strikes the water becomes a centre of disturbance, from which a series of ring-ripples expand outwards. Gravity and inertia are the agents by which this wave-motion is produced, and a rough experiment will suffice to show that the rate of propagation does not amount to a foot a second. A series of slight mechanical shocks is experienced by a body plunged in the water, as the wavelets reach it in succession. But a finer motion is at the same time set up and propagated. If the head and ears be immersed in the water, as in an experiment of Franklin's, the tick of the drop is heard. Now, this sonorous impulse is propagated, not at the rate of a foot, but at the rate of 4,700 feet a second. In this case it is not the gravity but the elasticity of the water that comes into play. Every liquid particle pushed against its neighbour delivers up its motion with extreme rapidity, and the pulse is propagated as a thrill. The incompressibility of water, as ill.u.s.trated by the famous Florentine experiment, is a measure of its elasticity; and to the possession of this property, in so high a degree, the rapid transmission of a sound-pulse through water is to be ascribed.

But water, as you know, is not necessary to the conduction of sound; air is its most common vehicle. And you know that when the air possesses the particular density and elasticity corresponding to the temperature of freezing water, the velocity of sound in it is 1,090 feet a second. It is almost exactly one-fourth of the velocity in water; the reason being that though the greater weight of the water tends to diminish the velocity, the enormous molecular elasticity of the liquid far more than atones for the disadvantage due to weight. By various contrivances we can compel the vibrations of the air to declare themselves we know the length and frequency of the sonorous waves, and we have also obtained great mastery over the various methods by which the air is thrown into vibration. We know the phenomena and laws of vibrating rods, of organ-pipes, strings, membranes, plates, and bells. We can abolish one sound by another. We know the physical meaning of music and noise, of harmony and discord.

In short, as regards sound in general, we have a very clear notion of the external physical processes which correspond to our sensations.

In the phenomena of sound, we travel a very little way from downright sensible experience. Still the imagination is to some extent exercised. The bodily eye, for example, cannot see the condensations and rarefactions of the waves of sound. We construct them in thought, and we believe as firmly in their existence as in that of the air itself. But now our experience is to be carried into a new region, where a new use is to be made of it. Having mastered the cause and mechanism of sound, we desire to know the cause and mechanism of light. We wish to extend our enquiries from the auditory to the optic nerve. There is in the human intellect a power of expansion--I might almost call it a power of creation--which is brought into play by the simple brooding upon facts. The legend of the spirit brooding over chaos may have originated in experience of this power. In the case now before us it has manifested itself by transplanting into s.p.a.ce, for the purposes of light, an adequately modified form of the mechanism of sound. We know intimately whereon the velocity of sound depends. When we lessen the density of the aerial medium, and preserve its elasticity constant, we augment the velocity. When we heighten the elasticity, and keep the density constant, we also augment the velocity. A small density, therefore, and a great elasticity, are the two things necessary to rapid propagation. Now light is known to move with the astounding velocity of 186,000 miles a second. How is such a velocity to be obtained? By boldly diffusing in s.p.a.ce a medium of the requisite tenuity and elasticity.

Let us make such a medium our starting-point, and, endowing it with one or two other necessary qualities, let us handle it in accordance with strict mechanical laws. Let us then carry our results from the world of theory into the world of sense, and see whether our deductions do not issue in the very phenomena of light which ordinary knowledge and skilled experiment reveal. If in all the multiplied varieties of these phenomena, including those of the most remote and entangled description, this fundamental conception always brings us face to face with the truth; if no contradiction to our deductions from it be found in external nature, but on all sides agreement and verification; if, moreover, as in the case of Conical Refraction and in other cases, it actually forces upon our attention phenomena which no eye had previously seen, and which no mind had previously imagined--such a conception, must, we think, be something more than a mere figment of the scientific fancy. In forming it, that composite and creative power, in which reason and imagination are united, has, we believe, led us into a world not less real than that of the senses, and of which the world of sense itself is the suggestion and, to a great extent, the outcome.

Far be it from me, however, to wish to fix you immovably in this or in any other theoretic conception. With all our belief of it, it will be well to keep the theory of a luminiferous aether plastic and capable of change. You may, moreover, urge that, although the phenomena occur _as if_ the medium existed, the absolute demonstration of its existence is still wanting. Far be it from me to deny to this reasoning such validity as it may fairly claim. Let us endeavour by means of a.n.a.logy to form a fair estimate of its force. You believe that in society you are surrounded by reasonable beings like yourself. You are, perhaps, as firmly convinced of this as of anything. What is your warrant for this conviction? Simply and solely this: your fellow-creatures behave as if they were reasonable; the hypothesis, for it is nothing more, accounts for the facts. To take an eminent example: you believe that our President is a reasonable being. Why? There is no known method of superposition by which any one of us can apply himself intellectually to any other, so as to demonstrate coincidence as regards the possession of reason. If, therefore, you hold our President to be reasonable, it is because he behaves _as if_ he were reasonable. As in the case of the aether, beyond the _'as if'_ you cannot go. Nay, I should not wonder if a close comparison of the data on which both inferences rest, caused many respectable persons to conclude that the aether had the best of it.

This universal medium, this light-aether as it is called, is the vehicle, not the origin, of wave-motion. It receives and transmits, but it does not create. Whence does it derive the motions it conveys?

For the most part from luminous bodies. By the motion of a luminous body I do not mean its sensible motion, such as the flicker of a candle, or the shooting out of red prominences from the limb of the sun. I mean an intestine motion of the atoms or molecules of the luminous body. But here a certain reserve is necessary. Many chemists of the present day refuse to speak of atoms and molecules as real things. Their caution leads them to stop short of the clear, sharp, mechanically intelligible atomic theory enunciated by Dalton, or any form of that theory, and to make the doctrine of 'multiple proportions' their intellectual bourne. I respect the caution, though I think it is here misplaced. The chemists who recoil from these notions of atoms and molecules accept, without hesitation, the Undulatory Theory of Light. Like you and me they one and all believe in an aether and its light-producing waves. Let us consider what this belief involves. Bring your imaginations once more into play, and figure a series of sound-waves pa.s.sing through air. Follow them up to their origin, and what do you there find? A definite, tangible, vibrating body. It may be the vocal chords of a human being, it may be an organ-pipe, or it may be a stretched string. Follow in the same manner a train of aether-waves to their source; remembering at the same time that your aether is matter, dense, elastic, and capable of motions subject to, and determined by, mechanical laws. What then do you expect to find as the source of a series of aether-waves? Ask your imagination if it will accept a vibrating multiple proportion--a numerical ratio in a state of oscillation? I do not think it will.

You cannot crown the edifice with this abstraction. The scientific imagination, which is here authoritative, demands, as the origin and cause of a series of aether-waves, a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the intellect, when focussed so as to give definition without penumbral haze, is sure to realise this image at the last.

With the view of preserving thought continuous throughout this discourse, and of preventing either failure of knowledge or of memory, from causing any rent in our picture, I here propose to run rapidly over a bit of ground which is probably familiar to most of you, but which I am anxious to make familiar to you all. The waves generated in the aether by the swinging atoms of luminous bodies are of different lengths and amplitudes. The amplitude is the width of swing of the individual particles of the waves. In water-waves it is the vertical height of the crest above the trough, while the length of the wave is the horizontal distance between two consecutive crests. The aggregate of waves emitted by the sun may be broadly divided into two cla.s.ses: the one cla.s.s competent, the other incompetent, to excite vision. But the light-producing waves differ markedly among themselves in size, form, and force. The length of the largest of these waves is about twice that of the smallest, but the amplitude of the largest is probably a hundred times that of the smallest. Now the force or energy of the wave, which, expressed with reference to sensation, means the intensity of the light, is proportional to the square of the amplitude. Hence the amplitude being one-hundredfold, the energy of the largest light-giving waves would be ten-thousandfold that of the smallest. This is not improbable. I use these figures not with a view to numerical accuracy, but to give you definite ideas of the differences that probably exist among the light-giving waves. And if we take the whole range of solar radiation into account--its non-visual as well as its visual waves--I think it probable that the force, or energy, of the largest wave is more than a million times that of the smallest.

Turned into their equivalents of sensation, the different light-waves produce different colours. Red, for example, is produced by the largest waves, violet by the smallest, while green is produced by a wave of intermediate length and amplitude. On entering from air into a more highly refracting substance, such as gla.s.s or water, or the sulphide of carbon, all the waves are r.e.t.a.r.ded, but the smallest ones most. This furnishes a means of separating the different cla.s.ses of waves from each other; in other words, of a.n.a.lysing the light.

Sent through a refracting prism, the waves of the sun are turned aside in different degrees from their direct course, the red least, the violet most. They are virtually pulled asunder, and they paint upon a white screen placed to receive them 'the solar spectrum.' Strictly speaking, the spectrum embraces an infinity of colours; but the limits of language, and of our powers of distinction, cause it to be divided into seven segments: red, orange, yellow, green, blue, indigo, violet.

These are the seven primary or prismatic colours.

Separately, or mixed in various proportions, the solar waves yield all the colours observed in nature and employed in art. Collectively, they give us the impression of whiteness. Pure unsifted solar light is white; and, if all the wave-const.i.tuents of such light be reduced in the same proportion, the light, though diminished in intensity, will still be white. The whiteness of snow with the sun shining upon it, is barely tolerable to the eye. The same snow under an overcast firmament is still white. Such a firmament enfeebles the light by reflecting it upwards; and when we stand above a cloud-field--on an Alpine summit, for instance, or on the top of Snowdon--and see, in the proper direction, the sun shining on the clouds below us, they appear dazzlingly white. Ordinary clouds, in fact, divide the solar light impinging on them into two parts--a reflected part and a transmitted part, in each of which the proportions of wave-motion which produce the impression of whiteness are sensibly preserved.

It will be understood that the condition of whiteness would fail if all the waves were diminished _equally_, or by the same absolute quant.i.ty. They must be reduced _proportionately_, instead of equally.

If by the act of reflection the waves of red light are split into exact halves, then, to preserve the light white, the waves of yellow, orange, green, and blue, must also be split into exact halves. In short, the reduction must take place, not by absolutely equal quant.i.ties, but by equal fractional parts. In white light the preponderance, as regards energy, of the larger over the smaller waves must always be immense. Were the case otherwise, the visual correlative, blue, of the smaller waves would have the upper hand in our sensations.

Not only are the waves of aether reflected by clouds, by solids, and by liquids, but when they pa.s.s from light air to dense, or from dense air to light, a portion of the wave-motion is always reflected. Now our atmosphere changes continually in density from top to bottom. It will help our conceptions if we regard it as made up of a series of thin concentric layers, or sh.e.l.ls of air, each sh.e.l.l being of the same density throughout, a small and sudden change of density occurring in pa.s.sing from sh.e.l.l to sh.e.l.l. Light would be reflected at the limiting surfaces of all these sh.e.l.ls, and their action would be practically the same as that of the real atmosphere. And now I would ask your imagination to picture this act of reflection. What must become of the reflected light? The atmospheric layers turn their convex surfaces towards the sun; they are so many convex mirrors of feeble power; and you will immediately perceive that the light regularly reflected from these surfaces cannot reach the earth at all, but is dispersed in s.p.a.ce. Light thus reflected cannot, therefore, be the light of the sky.

But, though the sun's light is not reflected in this fashion from the aerial layers to the earth, there is indubitable evidence to show that the light of our firmament is scattered light. Proofs of the most cogent description could be here adduced; but we need only consider that we receive light at the same time from all parts of the hemisphere of heaven. The light of the firmament comes to us across the direction of the solar rays, and even against the direction of the solar rays; and this lateral and opposing rush of wave-motion can only be due to the rebound of the waves from the air itself, or from something suspended in the air. It is also evident that, unlike the action of clouds, the solar light is not reflected by the sky in the proportions which produce white. The sky is blue, which indicates an excess of the shorter waves. In accounting for the colour of the sky, the first question suggested by a.n.a.logy would undoubtedly be, Is not the air blue? The blueness of the air has, in fact, been given as a solution of the blueness of the sky. But how, if the air be blue, can the light of sunrise and sunset, which travels through vast distances of air, be yellow, orange, or even red? The pa.s.sage of white solar light through a blue medium could by no possibility redden the light.

The hypothesis of a blue air is therefore untenable. In fact the agent, whatever it is, which sends us the light of the sky, exercises in so doing a dichroitic action. The light reflected is blue, the light transmitted is orange or red. A marked distinction is thus exhibited between the matter of the sky, and that of an ordinary cloud, which exercises no such dichroitic action.

By the scientific use of the imagination we may hope to penetrate this mystery. The cloud takes no note of size on the part of the waves of aether, but reflects them all alike. It exercises no selective action. Now the cause of this may be that the cloud particles are so large, in comparison with the waves of aether, as to reflect them all indifferently. A broad cliff reflects an Atlantic roller as easily as a ripple produced by a seabird's wing; and in the presence of large reflecting surfaces, the existing differences of magnitude among the waves of aether may disappear. But supposing the reflecting particles, instead of being very large, to be very small in comparison with the size of the waves. In this case, instead of the whole wave being fronted and thrown back, a small portion only is shivered off.

The great ma.s.s of the wave pa.s.ses over such a particle without reflection. Scatter, then, a handful of such minute foreign particles in our atmosphere, and set imagination to watch their action upon the solar waves. Waves of all sizes impinge upon the particles, and you see at every collision a portion of the impinging wave struck off; all the waves of the spectrum, from the extreme red to the extreme violet, being thus acted upon.

Remembering that the red waves stand to the blue much in the relation of billows to ripples, we have to consider whether those extremely small particles are competent to scatter all the waves in the same proportion. If they be not--and a little reflection will make it clear that they are not--the production of colour must be an incident of the scattering. Largeness is a thing of relation; and the smaller the wave, the greater is the relative size of any particle on which the wave impinges, and the greater also the ratio of the portion scattered to the total wave A pebble, placed in the way of the ring-ripples produced by heavy raindrops on a tranquil pond, will scatter a large fraction of each ripple, while the fractional part of a larger wave thrown back by the same pebble might be infinitesimal.

Now we have already made it clear to our minds that to preserve the solar light white, its const.i.tuent proportions must not be altered; but in the act of division performed by these very small particles the proportions are altered; an undue fraction of the smaller waves is scattered by the particles, and, as a consequence, in the scattered light, blue will be the predominant colour. The other colours of the spectrum must, to some extent, be a.s.sociated with the blue. They are not absent, but deficient. We ought, in fact, to have them all, but in diminishing proportions, from the violet to the red.

We have here presented a case to the imagination, pad, a.s.suming the undulatory theory to be a reality, we have, I think, fairly reasoned our way to the conclusion, that were particles, small in comparison to the sizes of the aether waves, sown in our atmosphere, the light scattered by those particles would be exactly such as we observe in our azure skies. When this light is a.n.a.lysed, all the colours of the spectrum are found, and they are found in the proportions indicated by our conclusion. Blue is not the sole, but it is the predominant colour.