Generations ago physicians had a glimmering of what we now term the germ theory of disease, as was shown by their use of such expressions as _materies morbi_ and morbid poisons. Even the definite relationship of special microscopic organisms to individual diseases was foreshadowed by Salisbury nearly fifty years ago. But it was not until years after those conceptions, and in no wise descended from or led up to by them, that an intelligible and satisfactory germ theory of disease was formulated.
It is to Pasteur, the immortal chemist, that we owe this theory, as well as that of the attenuation of viruses--both of more than theoretical import, since they have given us aseptic surgery, the power of frequently preventing hydrophobia, the ant.i.toxine treatment of diphtheria, and the ability to stay the hand of Death in the form of many a stalking pestilence. Every infectious disease is now held to be due to its own particular micro-organism, and many diseases that were not until recently thought to be infectious are now cla.s.sed as such because they have been proved to be caused by living germs. Conspicuous among these diseases is pulmonary consumption. In the case of almost every one of these diseases we have discovered the specific germ and are able to demonstrate its presence, either by its microscopical appearance, by its behavior on contact with certain stains, or by the forms that cultures of it a.s.sume. The micro-organism of small-pox and that of cancer (the existence of which is a.s.sumed) have not yet been isolated. Some of these germs, like that of teta.n.u.s (lockjaw), gain entrance to the system only through a wound; others, like those of typhoid fever and cholera, are swallowed; others, like that of pneumonia, are inhaled; still others, like that of tuberculous disease, are either swallowed or inhaled. Some are believed to be transmissible to the unborn child; and a few are ordinarily harmless parasites, becoming pathogenic only when they accidentally gain access to other parts of the system than those which const.i.tute their natural habitat.
These microscopic organisms do not by their mere presence set up disease, unless indeed they are in such overwhelming numbers as to block the capillary blood vessels mechanically. Some of them are carried broadcast in the blood current, while others remain at the point of entrance; in either case they elaborate certain products, termed toxines, which act, either locally or through the circulation, to cause the disease. These toxines eventually kill the micro-organisms that produced them, quite as an animal may be smothered in its own exhalations; or at least they would do so if the "host" survived long enough for the completion of the process. Meantime, they have either killed the "host" or been defeated by certain very interesting natural processes. But before either of these occurrences has had time to take place, fortunately, in the great majority of instances, save those of exposure to the most deadly of infections, the vital power of the invaded individual has coped successfully with the invaders at the very point of attack--has repulsed the attacking party without appreciable impairment of its own force--and no illness results. For example, practically all of us inhale the germ of consumption repeatedly, but most of us suffer no harm from it simply because the fluids which bathe the surface on which the germ effects a lodgment are endowed with properties which either kill the germ or rob it of its power for harm; but these properties suffice only when the general health is unimpaired.
In case the attack is not successfully repelled at the outset, what happens? There begins a struggle between the invaders and what may be called the reserves of the organism, consisting of the white blood corpuscles, which undergo a great augmentation in number. These corpuscles are endowed with the faculty of amoeboid movement; that is to say, they may shoot out projections from their substance, and even convert themselves for the time being into traps, seizing upon the pathogenic bacteria, incarcerating them within their own ma.s.s, and carrying them away to be thrust out of the system by organs whose function it is to eliminate extraneous matter. These corpuscles are, indeed, said figuratively to _eat_ the malign micro-organisms, whence they have been termed phagocytes (from [Greek: phagein], to eat, and [Greek: kutos], a cell); also because they carry away refuse and noxious material, they have been called "the scavengers of the system."
By means of their amoeboid movement they are enabled to worm themselves through inconceivably minute apertures in the blood vessels, and attack and devour peccant matter wherever it may have effected a lodgment.
These white corpuscles are also known as leucocytes, and their increase in number when they are called upon to resist bacterial invasion is spoken of as hyperleucocytosis. The discovery of their protective function is to be credited to Metchnikoff, a Russian physician now teaching in Paris. When they migrate from the blood vessels in great numbers they finally, after having fulfilled their office as phagocytes, degenerate into the corpuscular elements of pus, which is the creamy liquid contained in an abscess. Their migratory power was discovered by Cohnheim.
But as a general thing the phagocytes do not succeed in making away with all the pathogenic germs, or even with enough of them to prevent the illness which they tend to produce. The further combat is between the poisonous products, termed toxines, engendered by the bacteria and certain antidotal substances, called ant.i.toxines, newly created in the watery portion of the blood by some wonderful provision of Nature that is not yet well understood. Each infective disease has its special toxine, and for the destruction of each the blood prepares its particular ant.i.toxine; possibly, however, some of the ant.i.toxines may be efficacious against more than one kind of toxine, for there are physicians who are convinced that vaccination is a temporary preventive of whooping-cough. But the elaboration of an ant.i.toxine takes time, and the result in any given case, whether in recovery or in death, seems to be settled by the ability or inability of the vital powers of the individual to hold out until they are relieved by the evolution of the necessary amount of ant.i.toxine.
In the long run, provided the sick person survives, more ant.i.toxine is generated than is required to save life. The excess remains in the system for a greater or lesser length of time, and this fact explains the individual's subsequent immunity to the disease from which he has recovered; any fresh invading force of the microbes of that disease finds that defensive preparations have been made in advance. In the case of some diseases this acquired immunity is usually lifelong, as in that of small-pox; in others, of which influenza is a notable example, it is as a rule very transitory; and there are all gradations between the two.
It is thought that this acquired immunity to some diseases may be transmitted to the offspring, for it is quite certain that there are many people who are from birth insusceptible to scarlet fever, no matter what may be the extent of their exposure to that disease.
The recognition of Nature's elaboration of protective ant.i.toxines has led to their artificial cultivation in the lower animals, and, thus produced, they have been used with brilliant results in the prevention and cure of at least one formidable disease, diphtheria. The immense reduction of the mortality from this disease that has followed the introduction of the treatment with the artificial ant.i.toxine we owe to Behring, of Germany, and Roux, of France. Omitting unnecessary details, we may describe the process of obtaining diphtheria ant.i.toxine as follows: A certain amount of diphtheritic poison (of the bacteriological sort, prepared by cultivating the diphtheria microbe) is injected into the circulation of a horse--sufficient to make the horse sick, but not enough to endanger his life. The horse's system straightway begins to elaborate the protective ant.i.toxine, and there results from this one injection a sufficient amount of it to save the horse, although far too little to make the serum of his blood potent enough for medicinal use.
Hence, after the lapse of a suitable interval, he is again injected with diphtheritic poison, and for the second time his blood begins to generate the ant.i.toxine. And the process is repeated again and again, the virulence of the poison being increased each time, until the horse's blood is fairly reeking with ant.i.toxine. Then blood is drawn freely from the horse, and it is allowed to separate into clot and serum, the latter alone being the part destined for use. This serum is tested on a small animal that has been inoculated with a deadly dose of the diphtheritic poison; if it saves the little creature from death, it is a.s.sumed to be potent enough for use on human beings, and, handled with all possible precautions against putrefaction or any contamination with pathogenic bacteria, it is furnished to physicians, its degree of potency being designated in "units."
If in this brief article, which does not purport to be more than a sketch of the tremendous strides made by medicine in the Nineteenth Century, so much s.p.a.ce has been given to the germ theory of disease, it is because the demonstration of the truth of that theory has been absolute, and has const.i.tuted the very marrow of almost all the medical progress of the century that has been the outcome of continuous thought and study as opposed to chance discovery.
Such results as the germ theory has now led to in the treatment of diphtheria it had already accomplished in the field of surgery as a consequence of that strict asepticism which, originating with Joseph Lister (now Lord Lister), and rapidly carried by him to a condition verging on technical completeness, was soon taken up by surgeons all over the world and brought wellnigh to perfection, so that the mortality of wounds of all sorts has been tremendously reduced, and many surgical operations are now practised frequently--indeed, whenever the occasion for them arises--that before the days of Listerism would have been looked upon as almost tantamount to the patient's death-warrant. More particularly is this the case as to operations which involve opening into the abdomen, the chest, or the cranium. So little risk now attaches to such operations, properly performed, that the opening of the abdominal cavity for the mere purpose of ascertaining the condition of its contents--"exploratory laparotomy," as it is called--is a matter of constant occurrence. Curiously enough, in some way not yet satisfactorily explained, that procedure in itself, without anything further being done, has in many instances resulted in decided amelioration of a morbid condition, if not in its cure. A striking example of this is seen in the benefit that often results in cases of one form of "consumption of the bowels," namely, tuberculous disease of the membrane that lines the abdominal wall and invests the abdominal organs. This is not the only operation that does good mysteriously; that of cutting out a bit of the iris in a form of deep-seated eye disease, glaucoma, that tends toward complete blindness, is hardly more explicable; neither is an incision of the capsule of the kidney for certain forms of Bright's disease, each of which stays the progress of the trouble in a goodly proportion of instances.
Another of the great divisions of the healing art, that of midwifery, has been enhanced quite as much as general surgery by the employment of Listerism. The process of childbirth, although a perfectly natural one, almost necessarily carries with it a certain amount of laceration, and, through the wound surfaces thus produced, absorption of poisonous material was formerly so frequent that puerperal fever figured prominently in mortality reports. It was Oliver Wendell Holmes--a graduate in medicine and a professor in the Harvard Medical School, though we are accustomed to think of him only as a delightful writer--who first declared that puerperal fever was the product of infection from without the body, and Semmelweis demonstrated the truth of the proposition. Holmes was a teacher of physiology, and his study of that branch of medical science was in itself enough to convince him of the doctrine which he inculcated.
Listerism must be credited, not only with having added immensely to the safety of the major operations of surgery, but also with having led to great improvement of their technics by reason of the greatly increased frequency with which it has come to be thought justifiable to practise them; what we do again and again we are apt in the end to do well, whereas that which we turn to only in despair and as rarely as possible, we do clumsily and imperfectly. Listerism has been unjustly alleged by a few to be unworthy of the appreciation in which it is held by the great majority of medical men of all countries; simple cleanliness, it has been urged, is quite as efficient as the full Listerian precautions.
This is begging the question, for simple cleanliness, "chemical cleanliness," is all that Listerism purports to accomplish. The use of antiseptics has been decried in the interest of asepticism, as if the whole purpose of antisepticism were not to secure asepsis. Lord Lister is ent.i.tled to the full credit of establishing the aseptic surgery of the present day, in spite of the facts that his doctrine followed rather than preceded his early improvements, that aseptic procedures have been brought nearer perfection elsewhere than in his own country, and that the whole system rests on foundations laid by Pasteur.
While it is quite true that to the Listerian theory and practice are almost wholly to be ascribed the favorable results of the major surgery of the present day, we must not forget the immeasurable benefits to the diseased, the injured, and the crippled that have arisen from patient efforts and occasional brilliant intuition that have had no connection with the germ theory of infection. Take the case of a broken leg, for example, an injury that formerly condemned the victim to weeks and weeks of confinement to bed, together with the suffering and danger almost inseparable from the old methods of the long straight splint and tight bandaging. At the present time he who has met with such a misfortune is commonly able to be about on crutches within a few days, and his broken bone mends while he is cultivating his appet.i.te and indulging in pleasant intercourse with his fellow-men. This great change has been made possible by one device after another, invented by different men.
Josiah Crosby introduced the use of sticking-plaster for extension, instead of the chafing bands previously employed; Gurdon Buck subst.i.tuted elastic extension by means of a weight and pulley for the rude and arbitrary traction in vogue before; James L. Little devised the plaster-of-Paris splint, whereby broken bones were immobilized with hardly appreciable discomfort; and Henry B. Sands established the safety and practicability of applying the plaster-of-Paris splint almost immediately after the reduction ("setting") of the fracture. In the meantime Nathan R. Smith and John T. Hodgen had demonstrated the advantages of suspending a fractured limb from above. All these men were Americans; surely our country has contributed powerfully to the well-being of the subjects of fracture. Other Americans, notably Lewis A. Sayre, have enabled sufferers with joint disease, including the dreaded hip disease, to run about and gain health and strength, instead of languishing in bed. Sayre, too, by his suspension treatment and the plaster-of-Paris jacket, set the hunchback on his feet at a stage in his disease in which before he had been forced to prolonged and painful rec.u.mbency.
Although men professing special skill in certain operations, and doubtless possessing it, flourished in old times, and left more or less of their impress on the surgery of the present day, for that matter, it was not until the second half of the Nineteenth Century that regional surgery (which is what specialism virtually amounts to) was systematically cultivated. Now there is hardly a portion of the body to which pract.i.tioners who make its ailments a specialty do not direct their searching methods of examination or on which they do not practise their ingenious devices in the way of treatment. Specialism has always been decried by a large section of the medical profession. On the other hand, it has been and is still overrated by the laity. The true estimate lies between the two. The specialists have advanced surgery immensely, but, with many honorable exceptions, they have laid too much stress on their several specialties, making too wide a range of ailments fall within them. As for the community at large, their shortcoming lies in the fact that most of them would seek for a specialist in mumps in case that painful but transitory infliction were to come upon them, and in their underrating of the family physician.
To change for a moment to a topic akin to the germ theory of disease, the reader may be reminded that the ant.i.toxine treatment of infectious disease involves in almost every instance the use of some product contained in the serum (that is to say, the watery part of the blood).
This leads to the subject of the use of natural and artificial serum in the treatment of disease. To quote again from the article ent.i.tled, "The Nineteenth Century in Medicine" ("New York Medical Journal," Dec.
29,1900): "It has been observed that the normal serum of certain animals that are insusceptible to particular infectious diseases, if injected into the human blood current or even into the subcutaneous tissue, confers more or less of immunity against those diseases.... Artificial serum seems to have been first employed by Edmund R. Peaslee as a benign application to the peritonaeum in the operation of ovariotomy. His conception of its mode of action is not very clear, but he was a very successful ovariotomist, and we can only conjecture that he builded better than he knew, like many another man. A few years ago much was expected from transfusion of blood, but gradually the conviction has forced itself upon us that it is wellnigh useless, and indeed that, on the whole, it is worse than useless. It has virtually been abandoned....
But experiments in transfusion have not been fruitless; they have culminated in demonstrating the inestimable value of infusions of 'normal,' or 'physiological,' solutions of sodium chloride, and not only of infusions, but also of peritoneal irrigation with such solutions.
Many a life has been saved by resorting to this measure, even in apparently desperate cases."
Within about a decade of the close of the century, Robert Koch, whose discoveries and ingenious studies in bacteriology had brought him world-wide renown, announced that he had produced a derivative of the tubercle bacillus, which he termed tuberculin, that he thought might prove curative of tuberculous disease. It was to be injected beneath the skin. If the subject was really tuberculous, he would "react" by manifesting a certain degree of fever, and repeated injections would bring about elimination of the tuberculous deposits and thus effect a cure. The world was carried away with such an announcement coming from such a man, and it was thoroughly believed that at last "the great white plague," consumption, was to be conquered. Tuberculin did, indeed, cure certain minor forms of tuberculous disease, such as the skin affection known as lupus, but it soon became evident that it was almost impotent in the treatment of pulmonary consumption. It has, however, served to enable the veterinarian to make out the existence of tuberculous disease in cattle at an early stage of its course, and it is probable that by the slaughter of cattle thus found to be tuberculous much infection of human beings has been prevented.
Tuberculin failed of its prime purpose, but it does seem to have marked the initiative of a campaign against consumption which has already proved of incalculable benefit, and bids fair to put that omnipresent disease toward the foot of the list of causes of death. We have made substantial advances in our knowledge of the disease, and we no longer regard it as incurable. We have learned that it is communicable from one person to another, but also that its communication can easily be prevented, so that there is no reason to shrink from a.s.sociation with tuberculous persons. We have learned, too, that consumption in one's progenitors, immediate or remote, hardly makes it even probable that he himself is doomed to suffer with it; the only tuberculous heredity that we now recognize is that of defective ability to withstand the infection, and even this we regard as in most instances readily surmountable. We have learned, furthermore, that pulmonary tuberculous disease is by no means so fatal as it was formerly esteemed, for men whose business it is to make great numbers of post-mortem examinations, such as coroners' physicians and hospital pathologists, a.s.sure us that in a very large percentage of cases of death from other causes they find indubitable signs of past tuberculous disease of the lungs which had ceased its activity--been, in fact, cured, either spontaneously or by medical intervention. Such intervention, it has been abundantly proved, is altogether likely to be successful if it is of the right sort and employed early. There is, to be sure, no cure-all. Powerful as the climatic treatment is, it must be supplemented by measures accurately adapted to the individual case, and failure to comprehend this fact still leads many a phthisical person to his grave. But information is rapidly being diffused, sanatoria for such of the tuberculous as can take advantage of them are multiplying, and those who are shut off from their aid are growing more and more cognizant of how they should live in order to give themselves the best chance of recovery and save their a.s.sociates from infection. The era of consumption-cures--meaning drugs--is past; but the disease is cured in an ever-increasing proportion of instances, and that, too, by medical though not medicinal measures.
At almost every turn medicine has been powerfully a.s.sisted by the sciences which should rather be termed correlative than subsidiary.
Notable among them is chemistry. The isolation of the active principles of medicinal plants--such as morphine, quinine, strychnine, and cocaine--has been a remarkable service rendered by chemistry to medicine. How should we be handicapped if we still had to fight malarial disease with the crude Peruvian bark instead of its chief alkaloid, quinine! And how impracticable if not impossible would it be to render the eye insensitive to pain with any extract of coca leaves, no matter how concentrated--a purpose that we accomplish almost instantly with cocaine! Of minor importance, perhaps, but not to be despised, is the resulting liberation from the old slavery to bulky and nauseous drugs. The isolation of active principles long antedated the synthetical preparations, but the latter came at last--the marvellous array of hypnotics, anodynes, and fever-quellers that are now at our command, largely coal-tar products. But it is not to pure chemistry alone that we are indebted for the elegant dosing of the present day; progressive pharmacy, with its tablets, its coated pills, and its capsules, has put to shame the old-time purveyor of galenicals. Right jauntily do we now take our "soda mint" in case of slight derangement of the stomach, happily oblivious of its vile prototype, the old rhubarb and soda mixture. Even castor oil has been stripped of its repulsiveness by the combinations which the soda water fountain affords.
It was but a step, we can now realize, from the employment of isolated vegetable principles to that of preparations of certain glandular organs of the animal economy, but the doctrine of "internal secretions" had to intervene, and its evolution took time; not till toward the close of the century did the venerable Brown-Sequard lead up to it. We have not yet come to "eye of newt and toe of frog," but what we have incorporated into modern therapeutics in the way of animal products lends at least some theoretical justification to the ancient use of the dried organs of various animals. It is but a few years since the "ductless glands"--such organs, as, for example, the thyreoid gland (an organ situated in the front of the neck, a small affair in its normal state, but prominent and even pendulous when by its permanent enlargement it comes to const.i.tute a goitre)--were looked upon as puzzles, as structures dest.i.tute of any known function. Some observers even affirmed that they had no function, though the constancy of goitre in cretins ought to have shown the fallacy of this allegation in the case of the thyreoid. We do not now need to be told that the thyreoid gland plays a very important part in the economy, for we know that its surgical removal gives rise to a special disease known as myxoedema, which, in addition to its physical manifestations, is characterized by impairment of the mental powers.
Consequently, this ductless gland--a gland, that is to say, which has no obvious ca.n.a.l by which it throws off any product of its activity--must elaborate some material that is necessary to the health of the organism and is imparted to the blood. That material, whatever it may be, is termed an "internal secretion." Some of the internal secretions have turned out to be of singular value medicinally. It is apparently not the ductless glands alone that furnish internal secretions; the glands that are provided with ducts and yield a definite and observable product secrete also a substance (perhaps more than one) which they give up to the blood.
Prominent among the therapeutic advances of the century is the direct reduction of the high temperature of sunstroke and certain fevers by the use of cold. Although foreshadowed by Currie early in the century by his use of cold affusion in the treatment of scarlet fever, it did not come into general use until the closing decades. It is employed princ.i.p.ally in typhoid fever, on the theory that a condition of high fever is in itself a source of danger quite distinct from the other injurious effects of a febrile disease. On the other hand, the employment of high degrees of heat has of late been shown to be a potent agency in the treatment of certain forms of disease, notably in various affections cla.s.sed as rheumatic. Applications of very hot air, provided it is thoroughly dry, are borne without serious discomfort, and their employment promises to be of greater service in the conditions in which it is resorted to than that of any other agent.
A revelation in the treatment of heart disease has been effected by the Bad Nauheim system of effervescent baths and resisted exercises. It is not only functional disorders of the heart that are relieved, but grave organic diseases also. Somewhat elaborate explanations of the way in which the treatment proves beneficial have been given, but they are not altogether satisfactory.
Thus far we have dealt chiefly with those developments of medicine that seem to have been the outgrowth of much thought and experiment, but there was one that can hardly be viewed as other than a happy discovery, yet it was one that was fraught with unspeakable mitigation of human suffering, and that wrought a boundless extension of the field of surgery. It was that of anaesthesia. The first to discover an efficient surgical anaesthetic was Crawford W. Long, of Georgia. It has been established that he performed several minor operations with the patient anaesthetized with sulphuric ether, but he did not proclaim his discovery, and so it was reserved for William T. G. Morton, of Boston (then a dentist, but subsequently a physician), to make the first public demonstration of the efficiency of ether as an anaesthetic, which he did in the operating theatre of the Ma.s.sachusetts General Hospital, in Boston, in the year 1846. The news of Morton's achievement spread broadcast, and it was at once realized that it was destined to revolutionize surgery. It certainly has done that, and in no less degree than was afterward accomplished by Listerism. Ether did not long remain the only anaesthetic known; Simpson, of Edinburgh, soon discovered that chloroform was possessed of even more decided anaesthetic properties. The inhalation of ether is disagreeable, and it is slow in producing the desired effect, whereas that of chloroform is not unpleasant, and it acts more rapidly. Consequently chloroform soon came to be generally preferred; but abundant experience has finally shown that ether is much the safer agent of the two, and improved methods of administration have almost entirely done away with the objections to its use, so that now it is looked upon as the preferable general anaesthetic. But general anaesthesia--meaning the suspension of sensibility in the whole organism, including unconsciousness--is not always necessary, and sometimes it is undesirable. We have now trustworthy local anaesthetics, the chief of which is cocaine, wherewith we are able to anaesthetize the part to be operated on without rendering the patient unconscious, and the co-operation that a conscious patient may be able to render is sometimes valuable. It was not alone in the direct saving of human suffering that anaesthetics proved a boon to the world; they have made possible an amount of experimental work on animals in the way of vivisection that humane investigators would otherwise have shrunk from, necessary as it has been and still is for the advancement of the healing art.
The operation of ovariotomy, first performed by Ephraim McDowell, of Kentucky, can hardly be cla.s.sed with the happy accidents; but so little had been said about it or thought concerning it that when the news of it reached Europe "from the wilds of America" the editor of a ponderous English quarterly journal of medicine recorded his incredulity in the words "_Credat Judoeus, non ego_" An ovarian tumor inevitably proves fatal in the long run if it is not removed. In a certain percentage of cases it is malignant and will kill whether it is removed or not, but the general result of ovariotomy has been the saving of thousands of women from untimely death. Bell, of Edinburgh, had imagined the operation and had mentioned it in his lectures, but none the less to McDowell is due the credit of demonstrating its feasibility.
Medicine bore quite its full share in the mitigation of the horrors and hardships of war that marked the Nineteenth Century. Its work was shown in the great reduction of pestilential disease incident to camp life, in prompt aid to the wounded, in the establishment of salubrious field and general hospitals, and in improved methods of transportation of the sick and wounded. Certainly the soldier on the sick list never before had such a fair prospect of rejoining his comrades safe and sound as he has now.
In the care of the insane, too--care not only in the sense of humane treatment, but in the systematic employment of measures for their restoration to mental soundness--the century has been marked by notable progress. This has been chiefly in the direction of preventing insanity, and although mental disease is said to be on the increase, it may undoubtedly be said with entire truth that its growing prevalence is not in proportion to the heightened frequency of "the strenuous life." We may confidently expect that a more p.r.o.nounced mastery over diseases of the mind will come when physicians in general are taught psychiatry clinically, so that the beginnings of mental alienation may be intelligently met by the family pract.i.tioner.
The supreme achievement of the medicine of the Nineteenth Century undoubtedly has been the development of its preventive feature. When we recall the fact that but a few years ago an attack of infectious disease was interpreted as a visitation of Providence, by a perversity that even the triumphs of vaccination did not serve to do away with; when we contemplate the well-ordered and well-understood measures that are now resorted to in an ever-increasing number of communities (and resorted to not solely on the outbreak of an epidemic, but at all times), to purify the air we breathe, the food we eat, and the water we drink; and when we reflect upon the greatly reduced morbidity as well as mortality of most infectious diseases--we must realize the immense service that has been rendered by preventive medicine. No doubt we must all die some time, and the day is yet far remote when the only causes of death will be old age and injury; but a decided prolongation of the average lifetime, such as the life-insurance companies recognize, is an unquestionable gain to the human race.
A great blessing that has been brought about in great measure by medical men has been the establishment of the profession of nursing. The work of caring for the sick between the physician's visits is no longer, at least in large communities and in cases of severe illness, left to over-sympathetic and uninstructed relatives or to outsiders who traded on mystery. An intelligent and intelligible record is now kept of all important happenings in the sick room, remedies are administered as they were ordered, needless alarm at something deemed by the patient to be of ill omen is quelled, and in case of real emergency, overlooked as it might otherwise have been, the physician is summoned to meet it. The advent of the trained nurse marked an era in medicine.
The literature of medicine has fully kept pace in volume with the progress of the art itself, and its quality has steadily improved. To this the great tomes of that gigantic work, the "Index-Catalogue of the Library of the Surgeon-General's Office, United States Army," bear solid testimony. It is a consolidated catalogue, by subjects and by authors' names, of practically every medical book published throughout the world and of every article in the periodical literature of medicine.
For its existence the world is indebted to Dr. John S. Billings, formerly a surgeon of high rank in the army and now the director of the New York Public Library, and for its continued existence to the United States Government, and it is to be hoped that Congress will never cease to provide adequately for its continued publication. Its completeness and its accuracy long ago led to its being prized everywhere.
There are some problems of which medicine has hardly yet entered upon the solution. Prominent among them is that of cancer. Little as we now know of the real nature of that disease, we know quite as much of it as we knew but a few years ago concerning other diseases equally destructive and far more prevalent, which, however, we have now practically mastered. Who can say that we shall not triumph over cancer while the Twentieth Century is still young? Our final triumph is indubitable.
The strongest individuality in the medicine of the Nineteenth Century was without doubt that of Rudolf Ludwig Karl Virchow (commonly written by him simply Rudolf Virchow). Although he took no direct part in any of the striking advances in practice that appeal to the laity, yet he was recognized the world over, among all cla.s.ses of educated and well-informed persons, as the one beacon light of Nineteenth-Century medicine whose glow had been the steadiest and the most enduring. This is because of the wide range of his learning in matters not pertaining closely to his profession. His professional brethren hold the same view, and this is because he so well controlled himself--checked himself at every turn by the severest application of system--that he continued for more than half a century an anchor to hold medical thought strictly down to fact. This was from no natural lack of volatility, for he was an _Acht-und-vierziger_ (Forty-eighter). In 1846, as a prosector in the University of Berlin, Virchow entered with Reinhardt upon a series of pathological investigations which at once received wide attention. In conjunction with Reinhardt, he founded the _Archiv fur pathologische Anatomie und Physiologie und fur klinische Medicin_[6] (a periodical familiarly called "Virchow's _Archiv_"), the publication of which was begun in the year 1847. Reinhardt died in 1852, leaving the editorship in the hands of Virchow alone, and he was still its editor up to the time of his death, on September 5, 1902.
[Footnote 6: Archives of Pathological Anatomy and Physiology and of Clinical Medicine.]
In consequence of his having openly proclaimed himself a Democrat in 1848, Virchow was forced to retire from the University of Berlin in the following year. He was at once made a professor in the University of Wurzburg, whence seven years later, in 1856, as the result of the strenuous interposition of various medical organizations, he was recalled to Berlin, where he was made a professor and director of the Pathological Inst.i.tute. He was appointed medical privy councillor in 1874, having several years before that entered upon an active political career and been one of the founders of the Progressive party, which he ably represented in the Landtag and the Reichstag. In 1869 he took part in founding the German and the Berlin Anthropological Societies, of each of which he was several times president.
Virchow investigated the most diverse subjects, as his profound studies of Schliemann's discoveries, as well as his other archaeological researches, show, and he was a rather prolific writer. The most important of his early works was _Die Cellularpathologie_, the first edition of which was published in 1858. Chance's English translation appeared in 1860, and Picard's French version came out in 1861. It is safe to say that no book of the century exerted a profounder influence on medical thought than Virchow's exposition of the cellular pathology.
His next notable publication was a collection of thirty lectures on Tumors (_Die krankhaften Geschwulste_,[7] Berlin, 1863-67). That he was not too absorbed in these lectures to bring his great powers to bear upon topics of the day is shown by the fact that before their publication was completed he brought out his work on Trichinae (_Darstellung der Lehre von den Trichinen_, 1864). Old age found him with industry and versatility unabated, for it was in 1892 that his _Crania ethnica americana_ appeared, and after that time he wrote a vigorous protest against the new-fangled spelling of the German language which he accused the schoolmasters of trying to foist on the people.
This was published in his _Archiv_. It may well be that his arguments have not been unavailing, since it is observable that several German publications that had adopted the new spelling have now dropped it.
[Footnote 7: Morbid Tumors.]
It must not be supposed that it was by his literary work alone, founded though it was manifestly on his profound study, that Virchow impressed his personality upon medicine; it was in his lectures and in his laboratory teaching, too, that he made himself felt. In all civilized countries there are many devoted workers in medical science who caught their first real inspiration from Virchow.
The writer once saw Virchow--only once, but it was a sight never to be forgotten. It was at a banquet given as one of the festivities incident to the annual meeting of the British Medical a.s.sociation in London in 1873. The company was not a large one, but it included such celebrities as Professor J. Burdon Sanderson, Sir William Jenner, Professor Chauveau, and Professor Marey. Virchow was conspicuously the man toward whom the eyes of all others were oftenest directed. Virchow met with the love as well as the admiration of his contemporaries, and both sentiments will descend to their successors, for his impress on the records of medicine is indelible, both as an instructor and as a friend of all real truth-seekers.
AUTHORITIES.
There is no full and connected account of the progress of medicine during the Nineteenth Century, but the reader may consult with profit the various medical biographies, also the following works: Silliman's "A Century of Medicine and Chemistry;" Jenner's "The Practical Medicine of To-day;" Buck's "Reference Handbook of the Medical Sciences;"
Eulenburg's "Real-Encyclopadie der gesammten Heilkunde;" the "Annus Medicus," published in the _Lancet_ at the close of each year; and Tinker's "America's Contributions to Surgery" (Bulletin of the Johns Hopkins Hospital, Aug.-Sept., 1902).