I suppose your first action, a.s.suming that you are a man of ordinary common sense, and that you have established this hypothesis to your own satisfaction, will very likely be to go off for the police, and set them on the track of the burglar, with the view to the recovery of your property. But just as you are starting with this object, some person comes in, and on learning what you are about, says, "My good friend, you are going on a great deal too fast. How do you know that the man who really made the marks took the spoons? It might have been a monkey that took them, and the man may have merely looked in afterwards." You would probably reply, "Well, that is all very well, but you see it is contrary to all experience of the way tea-pots and spoons are abstracted; so that, at any rate, your hypothesis is less probable than mine." While you are talking the thing over in this way, another friend arrives, one of the good kind of people that I was talking of a little while ago. And he might say, "Oh, my dear sir, you are certainly going on a great deal too fast. You are most presumptuous. You admit that all these occurrences took place when you were fast asleep, at a time when you could not possibly have known anything about what was taking place. How do you know that the laws of Nature are not suspended during the night?
It may be that there has been some kind of supernatural interference in this case." In point of fact, he declares that your hypothesis is one of which you cannot at all demonstrate the truth, and that you are by no means sure that the laws of Nature are the same when you are asleep as when you are awake.
Well, now, you cannot at the moment answer that kind of reasoning. You feel that your worthy friend has you somewhat at a disadvantage. You will feel perfectly convinced in your own mind, however, that you are quite right, and you say to him, "My good friend, I can only be guided by the natural probabilities of the case, and if you will be kind enough to stand aside and permit me to pa.s.s, I will go and fetch the police."
Well, we will suppose that your journey is successful, and that by good luck you meet with a policeman; that eventually the burglar is found with your property on his person, and the marks correspond to his hand and to his boots. Probably any jury would consider those facts a very good experimental verification of your hypothesis, touching the cause of the abnormal phenomena observed in your parlor, and would act accordingly.
Now, in this supposit.i.tious case, I have taken phenomena of a very common kind, in order that you might see what are the different steps in an ordinary process of reasoning, if you will only take the trouble to a.n.a.lyse it carefully. All the operations I have described, you will see, are involved in the mind of any man of sense in leading him to a conclusion as to the course he should take in order to make good a robbery and punish the offender. I say that you are led, in that case, to your conclusion by exactly the same train of reasoning as that which a man of science pursues when he is endeavouring to discover the origin and laws of the most occult phenomena. The process is, and always must be, the same; and precisely the same mode of reasoning was employed by Newton [90] and Laplace [91] in their endeavours to discover and define the causes of the movements of the heavenly bodies, as you, with your own common sense, would employ to detect a burglar. The only difference is, that the nature of the inquiry being more abstruse, every step has to be most carefully watched, so that there may not be a single crack or flaw in your hypothesis. A flaw or crack in many of the hypotheses of daily life may be of little or no moment as affecting the general correctness of the conclusions at which we may arrive; but, in a scientific inquiry, a fallacy, great or small, is always of importance, and is sure to be in the long run constantly productive of mischievous if not fatal results.
Do not allow yourselves to be misled by the common notion that an hypothesis is untrustworthy simply because it is an hypothesis. It is often urged, in respect to some scientific conclusion, that, after all, it is only an hypothesis. But what more have we to guide us in nine-tenths of the most important affairs of daily life than hypotheses, and often very ill-based ones? So that in science, where the evidence of an hypothesis is subjected to the most rigid examination, we may rightly pursue the same course. You may have hypotheses, and hypotheses. A man may say, if he likes, that the moon is made of green cheese: that is an hypothesis. But another man, who has devoted a great deal of time and attention to the subject, and availed himself of the most powerful telescopes and the results of the observations of others, declares that in his opinion it is probably composed of materials very similar to those of which our own earth is made up: and that is also only an hypothesis. But I need not tell you that there is an enormous difference in the value of the two hypotheses. That one which is based on sound scientific knowledge is sure to have a corresponding value; and that which is a mere hasty random guess is likely to have but little value.
Every great step in our progress in discovering causes has been made in exactly the same way as that which I have detailed to you. A person observing the occurrence of certain facts and phenomena asks, naturally enough, what process, what kind of operation known to occur in Nature applied to the particular case, will unravel and explain the mystery?
Hence you have the scientific hypothesis; and its value will be proportionate to the care and completeness with which its basis had been tested and verified. It is in these matters as in the commonest affairs of practical life: the guess of the fool will be folly, while the guess of the wise man will contain wisdom. In all cases, you see that the value of the result depends on the patience and faithfulness with which the investigator applies to his hypothesis every possible kind of verification.
ON THE PHYSICAL BASIS OF LIFE [92]
In order to make the t.i.tle of this discourse generally intelligible, I have translated the term "Protoplasm," which is the scientific name of the substance of which I am about to speak, by the words "the physical basis of life." I suppose that, to many, the idea that there is such a thing as a physical basis, or matter, of life may be novel--so widely spread is the conception of life as a something which works through matter, but is independent of it; and even those who are aware that matter and life are inseparably connected, may not be prepared for the conclusion plainly suggested by the phrase, "THE physical basis or matter of life," that there is some one kind of matter which is common to all living beings, and that their endless diversities are bound together by a physical, as well as an ideal, unity. In fact, when first apprehended, such a doctrine as this appears almost shocking to common sense.
What, truly, can seem to be more obviously different from one another, in faculty, in form, and in substance, than the various kinds of living beings? What community of faculty can there be between the bright-coloured lichen, which so nearly resembles a mere mineral incrustation of the bare rock on which it grows, and the painter, to whom it is instinct with beauty, or the botanist, whom it feeds with knowledge?
Again, think of the microscopic fungus--a mere infinitesimal ovoid particle, which finds s.p.a.ce and duration enough to multiply into countless millions in the body of a living fly; and then of the wealth of foliage, the luxuriance of flower and fruit, which lies between this bald sketch of a plant and the giant pine of California, towering to the dimensions of a cathedral spire, or the Indian fig, which covers acres with its profound shadow, and endures while nations and empires come and go around its vast circ.u.mference. Or, turning to the other half of the world of life, picture to yourselves the great Finner whale,[93] hugest of beasts that live, or have lived, disporting his eighty or ninety feet of bone, muscle and blubber, with easy roll, among waves in which the stoutest ship that ever left dockyard would flounder hopelessly; and contrast him with the invisible animalcules--mere gelatinous specks, mult.i.tudes of which could, in fact, dance upon the point of a needle with the same ease as the angels of the Schoolmen could, in imagination.
With these images before your minds, you may well ask, what community of form, or structure, is there between the animalcule and the whale; or between the fungus and the fig-tree? And, a fortiori,[94] between all four?
Finally, if we regard substance, or material composition, what hidden bond can connect the flower which a girl wears in her hair and the blood which courses through her youthful veins; or, what is there in common between the dense and resisting ma.s.s of the oak, or the strong fabric of the tortoise, and those broad disks of gla.s.sy jelly which may be seen pulsating through the waters of a calm sea, but which drain away to mere films in the hand which raises them out of their element?
Such objections as these must, I think, arise in the mind of every one who ponders, for the first time, upon the conception of a single physical basis of life underlying all the diversities of vital existence; but I propose to demonstrate to you that, notwithstanding these apparent difficulties, a threefold unity--namely, a unity of power or faculty, a unity of form, and a unity of substantial composition--does pervade the whole living world.
No very abstruse argumentation is needed, in the first place to prove that the powers, or faculties, of all kinds of living matter, diverse as they may be in degree, are substantially similar in kind.
Goethe has condensed a survey of all powers of mankind into the well-known epigram:--[95]
"Warum treibt sich das Volk so und schreit? Es will sich ernahren Kinder zeugen, und die nahren so gut es vermag. . . . . . . . . . . . . .
Weiter bringt es kein Mensch, stell' er sich wie er auch will."
In physiological language this means, that all the multifarious and complicated activities of man are comprehensible under three categories.
Either they are immediately directed towards the maintenance and development of the body, or they effect transitory changes in the relative positions of parts of the body, or they tend towards the continuance of the species. Even those manifestations of intellect, of feeling, and of will, which we rightly name the higher faculties, are not excluded from this cla.s.sification, inasmuch as to every one but the subject of them, they are known only as transitory changes in the relative positions of parts of the body. Speech, gesture, and every other form of human action are, in the long run, resolvable into muscular contraction, and muscular contraction is but a transitory change in the relative positions of the parts of a muscle. But the scheme which is large enough to embrace the activities of the highest form of life, covers all those of the lower creatures. The lowest plant, or animalcule, feeds, grows, and reproduces its kind. In addition, all animals manifest those transitory changes of form which we cla.s.s under irritability and contractility; and, it is more than probable, that when the vegetable world is thoroughly explored, we shall find all plants in possession of the same powers, at one time or other of their existence.
I am not now alluding to such phaenomena, at once rare and conspicuous, as those exhibited by the leaflets of the sensitive plants, or the stamens of the barberry, but to much more widely spread, and at the same time, more subtle and hidden, manifestations of vegetable contractility.
You are doubtless aware that the common nettle owes its stinging property to the innumerable stiff and needle-like, though exquisitely delicate, hairs which cover its surface. Each stinging-needle tapers from a broad base to a slender summit, which, though rounded at the end, is of such microscopic fineness that it readily penetrates, and breaks off in, the skin. The whole hair consists of a very delicate outer case of wood, closely applied to the inner surface of which is a layer of semi-fluid matter, full of innumerable granules of extreme minuteness.
This semi-fluid lining is protoplasm, which thus const.i.tutes a kind of bag, full of a limpid liquid, and roughly corresponding in form with the interior of the hair which it fills. When viewed with a sufficiently high magnifying power, the protoplasmic layer of the nettle hair is seen to be in a condition of unceasing activity. Local contractions of the whole thickness of its substance pa.s.s slowly and gradually from point to point, and give rise to the appearance of progressive waves, just as the bending of successive stalks of corn by a breeze produces the apparent billows of a cornfield.
But, in addition to these movements, and independently of them, the granules are driven, in relatively rapid streams, through channels in the protoplasm which seem to have a considerable amount of persistence.
Most commonly, the currents in adjacent parts of the protoplasm take similar directions; and, thus, there is a general stream up one side of the hair and down the other. But this does not prevent the existence of partial currents which take different routes; and sometimes trains of granules may be seen coursing swiftly in opposite directions within a twenty-thousandth of an inch of one another; while, occasionally, opposite streams come into direct collision, and, after a longer or shorter struggle, one predominates. The cause of these currents seems to lie in contractions of the protoplasm which bounds the channels in which they flow, but which are so minute that the best microscopes show only their effects, and not themselves.
The spectacle afforded by the wonderful energies prisoned within the compa.s.s of the microscopic hair of a plant, which we commonly regard as a merely pa.s.sive organism, is not easily forgotten by one who has watched its display, continued hour after hour, without pause or sign of weakening. The possible complexity of many other organic forms, seemingly as simple as the protoplasm of the nettle, dawns upon one; and the comparison of such a protoplasm to a body with an internal circulation, which has been put forward by an eminent physiologist, loses much of its startling character. Currents similar to those of the hairs of the nettle have been observed in a great mult.i.tude of very different plants, and weighty authorities have suggested that they probably occur, in more or less perfection, in all young vegetable cells. If such be the case, the wonderful noonday silence of a tropical forest is, after all, due only to the dulness of our hearing; and could our ears catch the murmur of these tiny Maelstroms, [96] as they whirl in the innumerable myriads of living cells which const.i.tute each tree, we should be stunned, as with the roar of a great city.
Among the lower plants, it is the rule rather than the exception, that contractility should be still more openly manifested at some periods of their existence. The protoplasm of Algae and Fungi becomes, under many circ.u.mstances, partially, or completely, freed from its woody case, and exhibits movements of its whole ma.s.s, or is propelled by the contractility of one, or more, hair-like prolongations of its body, which are called vibratile cilia. And, so far as the conditions of the manifestation of the phaenomena of contractility have yet been studied, they are the same for the plant as for the animal. Heat and electric shocks influence both, and in the same way, though it may be in different degrees. It is by no means my intention to suggest that there is no difference in faculty between the lowest plant and the highest, or between plants and animals. But the difference between the powers of the lowest plant, or animal, and those of the highest, is one of degree, not of kind, and depends, as Milne-Edwards [97] long ago so well pointed out, upon the extent to which the principle of the division of labour is carried out in the living economy. In the lowest organism all parts are competent to perform all functions, and one and the same portion of protoplasm may successfully take on the function of feeding, moving, or reproducing apparatus. In the highest, on the contrary, a great number of parts combine to perform each function, each part doing its allotted share of the work with great accuracy and efficiency, but being useless for any other purpose.
On the other hand, notwithstanding all the fundamental resemblances which exist between the powers of the protoplasm in plants and in animals, they present a striking difference (to which I shall advert more at length presently), in the fact that plants can manufacture fresh protoplasm out of mineral compounds, whereas animals are obliged to procure it ready made, and hence, in the long run, depend upon plants.
Upon what condition this difference in the powers of the two great divisions of the world of life depends, nothing is at present known.
With such qualifications as arises [98] out of the last-mentioned fact, it may be truly said that the acts of all living things are fundamentally one. Is any such unity predicable of their forms? Let us seek in easily verified facts for a reply to this question. If a drop of blood be drawn by p.r.i.c.king one's finger, and viewed with proper precautions, and under a sufficiently high microscopic power, there will be seen, among the innumerable mult.i.tude of little, circular, discoidal bodies, or corpuscles, which float in it and give it its colour, a comparatively small number of colourless corpuscles, of somewhat larger size and very irregular shape. If the drop of blood be kept at the temperature of the body, these colourless corpuscles will be seen to exhibit a marvellous activity, changing their forms with great rapidity, drawing in and thrusting out prolongations of their substance, and creeping about as if they were independent organisms.
The substance which is thus active is a ma.s.s of protoplasm, and its activity differs in detail, rather than in principle, from that of the protoplasm of the nettle. Under sundry circ.u.mstances the corpuscle dies and becomes distended into a round ma.s.s, in the midst of which is seen a smaller spherical body, which existed, but was more or less hidden, in the living corpuscle, and is called its nucleus. Corpuscles of essentially similar structure are to be found in the skin, in the lining of the mouth, and scattered through the whole framework of the body.
Nay, more; in the earliest condition of the human organism, in that state in which it has but just become distinguishable from the egg in which it arises, it is nothing but an aggregation of such corpuscles, and every organ of the body was, once, no more than such an aggregation.
Thus a nucleated ma.s.s of protoplasm turns out to be what may be termed the structural unit of the human body. As a matter of fact, the body, in its earliest state, is a mere multiple of such units; and in its perfect condition, it is a multiple of such units, variously modified.
But does the formula which expresses the essential structural character of the highest animal cover all the rest, as the statement of its powers and faculties covered that of all others? Very nearly. Beast and fowl, reptile and fish, mollusk, worm, and polype, are all composed of structural units of the same character, namely, ma.s.ses of protoplasm with a nucleus. There are sundry very low animals, each of which, structurally, is a mere colourless blood-corpuscle, leading an independent life. But, at the very bottom of the animal scale, even this simplicity becomes simplified, and all the phaenomena of life are manifested by a particle of protoplasm without a nucleus. Nor are such organisms insignificant by reason of their want of complexity. It is a fair question whether the protoplasm of those simplest forms of life, which people an immense extent of the bottom of the sea, would not outweigh that of all the higher living beings which inhabit the land put together. And in ancient times, no less than at the present day, such living beings as these have been the greatest of rock builders.
What has been said of the animal world is no less true of plants.
Imbedded in the protoplasm at the broad, or attached, end of the nettle hair, there lies a spheroidal nucleus. Careful examination further proves that the whole substance of the nettle is made up of a repet.i.tion of such ma.s.ses of nucleated protoplasm, each contained in a wooden case, which is modified in form, sometimes into a woody fibre, sometimes into a duct or spiral vessel, sometimes into a pollen grain, or an ovule.
Traced back to its earliest state, the nettle arises as the man does, in a particle of nucleated protoplasm. And in the lowest plants, as in the lowest animals, a single ma.s.s of such protoplasm may const.i.tute the whole plant, or the protoplasm may exist without a nucleus.
Under these circ.u.mstances it may well be asked, how is one ma.s.s of non-nucleated protoplasm to be distinguished from another? why call one "plant" and the other "animal"?
The only reply is that, so far as form is concerned, plants and animals are not separable, and that, in many cases, it is a mere matter of convention whether we call a given organism an animal or a plant. There is a living body called Aethalium septic.u.m, which appears upon decaying vegetable substances, and, in one of its forms, is common upon the surfaces of tan-pits. In this condition it is, to all intents and purposes, a fungus, and formerly was always regarded as such; but the remarkable investigations of De Bary [99] have shown that, in another condition, the Aethalium is an actively locomotive creature, and takes in solid matters, upon which, apparently, it feeds, thus exhibiting the most characteristic feature of animality. Is this a plant; or is it an animal? Is it both; or is it neither? Some decide in favour of the last supposition, and establish an intermediate kingdom, a sort of biological No Man's Land [100] for all these questionable forms. But, as it is admittedly impossible to draw any distinct boundary line between this no man's land and the vegetable world on the one hand, or the animal, on the other, it appears to me that this proceeding merely doubles the difficulty which, before, was single.
Protoplasm, simple or nucleated, is the formal basis of all life. It is the clay of the potter: which, bake it and paint it as he will, remains clay, separated by artifice, and not by nature, from the commonest brick or sun-dried clod.
Thus it becomes clear that all living powers are cognate, and that all living forms are fundamentally of one character. The researches of the chemist have revealed a no less striking uniformity of material composition in living matter.
In perfect strictness, it is true that chemical investigation can tell us little or nothing, directly, of the composition of living matter, inasmuch as such matter must needs die in the act of a.n.a.lysis,--and upon this very obvious ground, objections, which I confess seem to me to be somewhat frivolous, have been raised to the drawing of any conclusions whatever respecting the composition of actually living matter, from that of the dead matter of life, which alone is accessible to us. But objectors of this cla.s.s do not seem to reflect that it is also, in strictness, true that we know nothing about the composition of any body whatever, as it is. The statement that a crystal of calc-spar consists of carbonate of lime, is quite true, if we only mean that, by appropriate processes, it may be resolved into carbonic acid and quicklime. If you pa.s.s the same carbonic acid over the very quicklime thus obtained, you will obtain carbonate of lime again; but it will not be calc-spar, nor anything like it. Can it, therefore, be said that chemical a.n.a.lysis teaches nothing about the chemical composition of calc-spar? Such a statement would be absurd; but it is hardly more so than the talk one occasionally hears about the uselessness of applying the results of chemical a.n.a.lysis to the living bodies which have yielded them.
One fact, at any rate, is out of reach of such refinements, and this is, that all the forms of protoplasm which have yet been examined contain the four elements, carbon, hydrogen, oxygen, and nitrogen, in very complex union, and that they behave similarly towards several reagents.
To this complex combination, the nature of which has never been determined with exactness, the name of Protein has been applied. And if we use this term with such caution as may properly arise out of our comparative ignorance of the things for which it stands, it may be truly said, that all protoplasm is proteinaceous, or, as the white, or alb.u.men, of an egg is one of the commonest examples of a nearly pure proteine matter, we may say that all living matter is more or less alb.u.minoid.
Perhaps it would not yet be safe to say that all forms of protoplasm are affected by the direct action of electric shocks; and yet the number of cases in which the contraction of protoplasm is shown to be affected by this agency increases every day.
Nor can it be affirmed with perfect confidence, that all forms of protoplasm are liable to undergo that peculiar coagulation at a temperature of 40-50 degrees centigrade, which has been called "heat-stiffening," though Kuhne's [101] beautiful researches have proved this occurrence to take place in so many and such diverse living beings, that it is hardly rash to expect that the law holds good for all.
Enough has, perhaps, been said to prove the existence of a general uniformity in the character of the protoplasm, or physical basis, of life, in whatever group of living beings it may be studied. But it will be understood that this general uniformity by no means excludes any amount of special modifications of the fundamental substance. The mineral, carbonate of lime, a.s.sumes an immense diversity of characters, though no one doubts that, under all these Protean changes, it is one and the same thing.
And now, what is the ultimate fate, and what the origin, of the matter of life?
Is it, as some of the older naturalists supposed, diffused throughout the universe in molecules, which are indestructible and unchangeable in themselves; but, in endless transmigration, unite in innumerable permutations, into the diversified forms of life we know? Or, is the matter of life composed of ordinary matter, differing from it only in the manner in which its atoms are aggregated? Is it built up of ordinary matter, and again resolved into ordinary matter when its work is done?
Modern science does not hesitate a moment between these alternatives.
Physiology writes over the portals of life--
"Debemur morti nos nostraque,"[102]
with a profounder meaning than the Roman poet attached to that melancholy line. Under whatever disguise it takes refuge, whether fungus or oak, worm or man, the living protoplasm not only ultimately dies and is resolved into its mineral and lifeless const.i.tuents, but is always dying, and, strange as the paradox may sound, could not live unless it died.